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and other superconducting cuprates

T. Strohm and M. Cardona
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

(July 9, 2004)

Superconductivity induced structures in the electronic Raman spectra of high-Tc superconductors
are computed using the results of ab initio LDA-LMTO three-dimensional band structure calcula-
tions via numerical integrations of the mass fluctuations, either in the whole 3D Brillouin zone or
limiting the integrations to the Fermi surface. The results of both calculations are rather simi-
lar, the Brillouin zone integration yielding additional weak structures related to the extended van
Hove singularities. Similar calculations have been performed for the normal state of these high-Tc

cuprates. Polarization configurations have been investigated and the results have been compared to
experimental spectra. The assumption of a simple dx2

−y2 -like gap function allows us to explain a
number of experimental features but is hard to reconcile with the relative positions of the A1g and
B1g peaks.

I. INTRODUCTION

After ten years of research in the field of high-Tc

superconductors1 (HTSC), many of their properties have
not yet been understood. In particular, the symmetry of
the superconducting gap2–4 is still controversial. Usu-
ally, one assumes that the superconducting condensate
in the HTSC can be described by an order parameter
∆k, which depends only on the quasi momentum k, but
not on band index n. Retardation effects are also often
neglected, i.e. the gap is assumed to be independent of
the frequency ω.

A wide range of experimental techniques can be em-
ployed to investigate the properties of the gap function.
Among these, Raman scattering has played an important
role.5,6 The dependence of the Raman response on the
directions of polarization of the incident and scattered
light yields several independent spectra which provide a
considerable number of constraints on the assumed k-
dependence of the gap function ∆k. However, Raman
scattering is not sensitive to the phase of the gap.

The Raman spectra at temperatures below Tc shows,
in most HTSC, a clear gap-like structure which lies in
the energy range of the optical phonons at the Γ point.
These phonons have been identified for most HTSC,7 and
the subtraction of the corresponding structures from the
spectra has become a standard procedure to isolate elec-
tronic structures containing gap information. Electronic
Raman scattering spectra are now available for many
high-Tc materials and, since they exhibit similar general
features, most of these data are considered to be reli-
able. In this paper, we attempt to interpret these spec-
tra from a theoretical point of view based on the full 3D
one-electron band structure. We pay attention to both,
line shapes and absolute scattering efficiencies.

The theory of electronic Raman scattering in super-

conductors was pioneered by Abrikosov and coworkers in
two important papers.8,9 In the first, they developed a
theory for the scattering efficiency of isotropic Fermi liq-
uids under the assumption that the attractive interaction
between quasiparticles can be neglected. In the second
paper, they extended this approach to anisotropic sys-
tems, introduced the effective mass vertex concept, and
included Coulomb screening. The current form of the
theory, developed mainly by Klein et al.,10 takes into ac-
count the attractive pairing interaction and emphasizes
the role of gauge invariance as well as the polarization de-
pendence for anisotropic gaps. In order to compare the
theoretical predictions with the experiment, we evaluate
them numerically in a quantitative manner (including ab-

solute scattering efficiencies!) and compare them to the
experimental findings.

Several calculations of the electronic Raman scattering
efficiency of HTSC have already been published. Some
of them use highly simplified 2D band structures and
a decomposition of the Raman vertex γk in Fermi sur-
face (FS) harmonics11 or Brillouin zone (BZ) harmon-
ics, as well as FS integrations instead of the required
BZ integrations.5,12,13 The results of these calculations
depend very strongly on the number of expansion co-
efficients used for γk and their relative values. Another
approach14 involves the use of band structures calculated
in the framework of the local density approximation15

(LDA) using the LMTO method.16,17 Within the approx-
imations of the LDA, this Raman vertex is exact, i.e. the
only errors made in such a calculation arise from limita-
tions of the LDA method itself and from the discretiza-
tion of the Brillouin zone or Fermi surface. Some of these
calculations, however, suffer from the fact that only the
imaginary part of the Tsuneto function18 has been used,
and that only 2D integrations were performed.6

The present approach19 is based on the full 3D LDA-
LMTO band structure. It uses a BZ integration, screen-

1



ing effects are included, and both the real and imagi-
nary part of the Tsuneto function are used as required
by the theory. Electronic Raman spectra are calculated
for YBa2Cu3O7 (Y-123) and YBa2Cu4O8 (Y-124). The
orthorhombicity of the cuprates is also taken into account
in the Raman vertex since we use as starting point the
band structure of the orthorhombic materials.

The cuprates under consideration are not only of in-
terest because of their superconducting, but also of
their strange normal-conducting properties. Usual met-
als should show peaks in their Raman spectra at their
plasma frequencies corresponding to Raman shifts of a
few eV. The optimally doped cuprates, in contrast, show
a very broad electronic background (from 0 to about 1 eV
Raman shift), which is almost independent of temper-
ature and frequency. The spectra of the underdoped
HTSC, such as Y-124, show some temperature depen-
dence at low frequencies (h̄ω ≪ kT ). It is possible to ex-
plain these peculiarities, together with other properties,
by assuming a certain form of the quasiparticle lifetime,
as was done in the Marginal Fermi Liquid theory.20,21

For the superconducting state, various forms for the
gap function have been proposed. That which has re-
ceived most experimental support has dx2−y2 symmetry,
i.e., B1g symmetry in tetragonal HTSC. The power of
Raman scattering to confirm such gap function has been
questioned, because, among other difficulties to be dis-
cussed below, it only probes the absolute value of the gap
function, i.e. it cannot distinguish between a dx2−y2-like
gap function (for instance cos 2φ), and a |cos 2φ| gap func-
tion, which corresponds to anisotropic s (A1g) symmetry.
However, it was pointed out that addition of impurities
can be used to effect the distinction.22

This paper is organized as follows: in Sec. II, we review
the main properties of the band structures of the investi-
gated cuprates, as obtained by LDA-LMTO calculations.
Sec. III discusses the theory of electronic Raman scatter-
ing in systems with an anisotropic band structure. We
first introduce the basic concept of Raman vertex, and
then present an expression relating the scattering effi-
ciency to the Raman susceptibility. In Sec. IV and V
we derive expressions for the Raman susceptibility in the
superconducting and normal conducting phases, and dis-
cuss some effects not directly contained in the presented
form of the theory. Section VI is concerned with aspects
of the experiments which have to be taken care of, espe-
cially with regard to the comparison with the theory. Fi-
nally, in Sec. VII the results of our numerical calculation
are presented and compared to the experimental results.
The difference between calculations involving only FS av-
eraging, and those in which such averaging is performed
over the whole BZ, are discussed.

II. LDA BAND STRUCTURE

The basis of our calculation is the LDA-LMTO band
structure of the HTSC under consideration.17 For the
sake of further discussion, we shall describe briefly such
band structure.

The Fermi surface of YBa2Cu3O7 (Y-123)17 consists
of four sheets, an even and an odd pdσ-like plane band,
a pdσ-like chain sheet and a very small pdπ-like chain
sheet. The latter is predicted by the full-potential LMTO
calculations as well as LAPW calculations.23 We use
the atomic spheres approximation (ASA) to the LMTO,
which does not reproduce this rather small feature. In the
case of Y-123 the three pdσ-like conduction bands extend
from −1 eV to 2 eV relative to the Fermi energy. They
are embedded in a broad valence band, which ranges
from −7 eV to 2 eV and consists of 36 bands (mainly
Cu-d and O-p orbitals). Below −7 eV, there is a gap of
4 eV. Above the conduction band, there is another gap
of 0.5 eV, above which are the lowest fully unoccupied
bands which consist mainly of d orbitals of Y and Ba.

The band structure of YBa2Cu4O8 (Y-124) shows sim-
ilar features. There is an additional pdσ-like chain band,
while the pdπ-like chain bands are predicted by both,
full-potential LMTO and LAPW to contain no holes, i.e.
to be completely filled.

An interesting feature of the band structure of both
Y-123 and Y-124 is an extended saddle point16 on the
kx-axis near the X point. This extended saddle point
corresponds to a van Hove singularity at approximately
25 meV (Y-123) and 110 meV (Y-124), respectively, be-
low the Fermi level. As will be shown, the compara-
tively large density of states in this energy region and
the warped nature of the corresponding bands has an
influence on the calculated electronic Raman spectrum.

The band structure which we used in our numerical cal-
culations was evaluated for Y-123 on a mesh of 48×48×12
points in the first BZ, involving 4373 irreducible points.
The band structure of Y-124 is less sensitive to the res-
olution of the grid (because the extended saddle point
lies deeper with respect to the Fermi surface). It was
thus sufficient to use a 24 × 24 × 12 mesh with 1099 ir-
reducible points. The calculations of the self-consistent
potential have been performed in the ASA. Therefore,
the pdπ chain band around the S point, which should be
partly filled, is completely filled. Because of the small
number of states involved, we do not think this should
affect significantly our results.

As stressed above, our calculations are based on a band
structure obtained within the LDA. We are aware of the
fact, that the mean free path for transport in the direc-
tion of the c-axis is smaller than the size of the unit cell,
i.e. that a description by means of a band structure ǫnk

may be questionable (Ioffe-Regel-limit). Nevertheless a
nontrivial band structure in the c-direction may simulate
some of the c-direction confinement effects and represent,
after integration along kz , a reasonable 2D band struc-
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ture.

III. GENERAL THEORY

Two approaches have been used to derive the cross
section (called scattering efficiency when referred to unit
path length in the solid) of electronic Raman scattering
in superconductors with anisotropic Fermi surfaces. The
first uses Green’s functions,8–10,24 and the second the ki-
netic equation.25,5 Both start with the simplification of
the Hamiltonian, using k ·p theory, which relates the Ra-
man vertex γk to the inverse effective mass tensor.9 We
first briefly review this procedure and, subsequently, the
derivation of the expression for the scattering efficiency
using the diagrammatic approach.

A. The Raman vertex

To derive an expression for the efficiency for electronic
Raman scattering, one has to replace the momentum p

in the Hamiltonian by p − (e/c)A. This yields two dis-
tinct perturbation terms: HAA = (r0/2)A2, quadratic
in the vector potential, and HA = −(e/mc)A · p, linear
in A (we use the transverse gauge; r0 = e2/(m0c

2) de-
notes the classical electron radius). The relevant states
in the theory are composed of the state of electrons in
the sample plus the state of the photon field. The initial
state of the photon field has nL laser photons with wave
vector kL and polarization eL and nS = 0 scattered pho-
tons with wave vector kS and polarization eS . The final
state has one laser photon less but one scattered photon
(Stokes scattering). The vector field can thus be written
as a superposition of an incoming and a scattered plane
wave, A = AL + AS with

AS = A+
S e∗Se−ikSr , AL = A−

LeLeikLr , (1)

where A+
S contains the creation operator for the scat-

tered photon and A−

L the annihilation operator for the
laser photons (note that these are not hermitian).

Since Raman scattering is a second order process in A,
the term HAA has to be treated in first order perturba-
tion theory. It is therefore nonresonant and includes only
intraband scattering. The matrix elements are given by

M (1)
nf ni

(q,k) =
1

2
r0

〈

nfk + q | A2 | nik
〉

= r0

〈

A+
S AL

〉

e∗SeLδninf
, (2)

whereas
〈

A+
S AL

〉

denotes a matrix element involving the
initial and final state of the photon field and q = kL−kS

is the momentum transfer from the photon field to the
sample. For other values of q, the matrix element (2)
vanishes.

The second term, HA, produces resonances via second
order perturbation theory. It has the form

M (2)
nf ni

(q,k) = r0

〈

A+
S AL

〉

∑

nm

Γ(2)
nf ni;nm

(q,k) (3)

with the expression

Γ(2)
nf ni;nm

(q,k) = (4)

〈nfk + q | e∗Sp | nmk + kL〉 〈nmk + kL | eLp | nik〉

ǫnik − ǫnmk+kL
+ ωL + i0

+

+
〈nfk + q | eLp | nmk − kS〉 〈nmk − kS | e∗Sp | nik〉

ǫnik − ǫnmk−kS
− ωS + i0

.

Here, ωL and ωS are the frequency of the incoming and
scattered light, respectively. Note that the states in the
sum above are states of the sample only. We have used
Bloch states with band and crystal momentum indices.
The wavevectors of light, kL and kS , can usually be ne-
glected in the matrix elements of Eq. (4) because vF ≪ c.
For the same reason, ǫnm,k+kL

≈ ǫnm,k. Therefore, we in-

troduce the symbol Γ
(2)
nf ni;nm(k) to denote expression (4)

with the light wavevectors set equal to zero.
If we now add the contributions of both terms in

Eqs. (2) and (3) and introduce second quantization, we
are left with the effective Hamiltonian

HR = r0

〈

A+
S AL

〉

ρ̃q (5)

as perturbation Hamiltonian leading to Raman scatter-
ing. The effective density operator ρ̃q can be expressed
in the form

ρ̃q =
∑

nf ,ni,k

γnf ni
(k) c+

nf ,k+qcni,k . (6)

using fermionic creation and annihilation operators for
Bloch electrons as well as the nondiagonal Raman vertex

γnf ni
(k) = e∗SeLδnf ni

+
∑

nm

Γ(2)
nf ni;nm

(k) . (7)

If we are interested mainly in the low frequency region,
say Raman shifts below 50 meV, no real interband tran-
sitions of significant weight are possible. This can eas-
ily be seen from the band structure (Fig. 2 of Ref. 16).
Therefore, we introduce the (intraband) Raman vertex

γn(k) = γnn(k).
We proceed by discussing a very important simplifi-

cation of (4) (with ni = nf = n and q = 0), the ef-

fective mass approximation. Four different cases will be
discussed. First, the virtual intraband transition with
nm = ni. In this case, up to first order in vF /c, we
have 〈nmk | p | nik〉 = 〈nik | p | nmk〉 (remember that
ni = nf ) and ǫnik − ǫnmk = 0. Then, it can be seen that
the contributions of virtual intraband transitions rela-
tive to the contribution of virtual interband transitions
to intermediate states are of the order of the Raman shift
over the laser frequency, i.e. ω/ωL ≪ 1, and can therefore
be neglected. The second case are the virtual interband
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transitions involving bands which are much farther away
from the FS than the light frequency. Then, because of
|ǫni

− ǫnm
| ≫ ωL, the light frequencies ωL as well as ωS

can be neglected in (4). The third case also involves vir-
tual interband transitions, but for bands at about the
laser frequency above the Fermi surface. Here, the scat-
tering is resonant, and the spectra are expected to depend
strongly on the laser wavelength. One can try to avoid
this situation by using different laser lines. So we assume
that in the third case ωL and ωS also can be neglected.
Finally, the forth case consists of virtual interband tran-
sitions to neighboring bands with ∆ǫ ≪ ωL. In this case,
neglecting ωL and ωS is more difficult to justify. We do it
nevertheless and reach the approximate conclusion that
we can neglect the light frequencies in Eq. (4) and can
restrict the sum in (3) to all nm 6= ni. Then, Eq. (7)
becomes completely equivalent to the expression for the
inverse effective mass from k ·p theory and we can write

γn(k) =
m

h̄2

∑

i,j

e∗S,i

∂2ǫnk

∂ki∂kj

eL,j (8)

i.e. the Raman vertex is equal to the inverse effective mass
contracted with the polarization vectors of the laser light
and the scattered light, respectively.

Therefore, using the term HR with the intraband Ra-
man vertex γnk = γnn(k) in Eq. (6) as perturbation to
the Hamiltonian for A = 0 and treating this in first order
perturbation theory is, under the mentioned restrictions,
equivalent to taking into consideration both terms HA

and HAA.9

According to the LMTO calculations, for Y-123 and
Y-124 there are bands above a band gap between approx-
imately 2 eV and 2.5 eV above the Fermi energy. These
bands can present a problem with respect to the former
discussion, because they are almost resonant for typi-
cal laser wavelengths like 514.5 nm. The same is true
for the conduction bands, which extend until 2 eV above
the Fermi surface. Note that due to the strong on-site
interaction at the Cu-d orbitals, correlation effects are
expected to be important in the electronic structure. It
is possible that at energies of the order of 1 eV or more
above the Fermi surface the picture of the Hubbard bands
is a better description of the band structure and may ex-
plain the weak dependence of the Raman spectra on the
laser frequency observed for laser frequencies in the vis-
ible range. The band structure shows many bands at
about the laser frequency below the Fermi energy. These
should yield resonant contributions to the Raman effi-
ciency.

Because the Raman vertex γk is, in the given approxi-
mation, the second derivative of the energy with respect
to k, the A2g component for tetragonal crystals vanishes
in this version of the theory (A2g is the symmetry of an
antisymmetric tensor). If one considers once more the
effects of a nearby resonance, it can be easily seen that
the Raman tensor does not have to be symmetric. This

stresses again the questionability of the effective mass
approach if the scattering is resonant.

B. The scattering efficiency

Using the effective mass approach, we arrived at the
effective Hamiltonian (5) with the effective mass deter-
mining the Raman vertex. This effective Hamiltonian
is linear in AL · AS . The derivation of the scattering
efficiency using linear response theory is now a straight-
forward task.

The first step is finding a relation between the Raman
efficiency and a dynamical structure factor of the sample.
Then, in a next step, the fluctuation-dissipation theorem
is used to connect the dynamical structure factor to the
imaginary part of a susceptibility, in our case the Raman
susceptibility.

To establish the relation to the dynamical structure
factor, we add the time evolution factor e−iωt to the ef-
fective Hamiltonian (5) and use the golden rule to find
the transition rate from a state i to a state f of the sam-
ple. Then, we sum over all final states f of the sample
and do a thermal averaging over the initial states i. The
transition rate from a state with nL ≡ nkLeL

laser pho-
tons and no scattered photon to a state with nL−1 laser
photons and nS ≡ nkSeS

= 1 scattered photon at a tem-
perature T is given by the expression

ΓT (kL, eL;kS , eS) =
2π

h̄
r2
0 ·

∣

∣

〈

A+
S AL

〉∣

∣

2
· S̃T (q, ω) (9)

(the superscript T denotes temperature dependency)
whereas

S̃T (q, ω) =
∑

i,f

e−βEi

Z
|〈f | ρ̃q | i〉|

2
δ(Ef − Ei + h̄ω) (10)

is a generalized dynamical structure factor (of the sam-
ple!). The partition function is denoted by Z, and β
is the inverse temperature. Now, we sum over all final
states in a certain region dΩ dωS of k-space around kS

and normalize to the incoming flux h̄cnL. This yields the
expression

d2σ

dΩ dω
(q, ω) =

ωS

ωL

r2
0S̃

T (q, ω) (11)

for the differential cross section d2σ/dΩdω for a given
Raman shift ω and a given momentum transfer q. This
differential cross section is proportional to the scattering
volume. When performing the calculation for a scatter-
ing volume equal to unity, σ becomes the commonly used
Raman scattering efficiency.

Finally, one can define a linear response function, the
Raman susceptibility

χRaman(q, t) =
i

h̄
Tr{Z−1e−βH0 [ρ̃q(t), ρ̃−q(0)]} (12)
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and its Fourier-transformed χRaman(q, ω). To relate the
imaginary part of this quantity to the structure func-
tion S̃T (q, ω), we use the fluctuation-dissipation theo-
rem. The result is

S̃T (q, ω) = −
1

π
(1 + nω) Im χRaman(q, ω) (13)

with the Bose factor nω.
Equations (11) and (13) relate the Raman efficiency

directly to the imaginary part of the Raman susceptibil-
ity. This evaluation of the Raman susceptibility shall be
given separately, (i) in Sec. IV for the superconducting
phase and Raman shifts of the order of the gap, and (ii)
in Sec. V for large Raman shifts in the superconducting
phase and for the normal phase.

IV. THEORY: SUPERCONDUCTING PHASE

As pointed out in Ref. 10, the Raman susceptibility
due to pair-breaking and including screening is given by
a polarization-like bubble made of a renormalized Ra-
man vertex Λk, a Raman vertex γk, and in between
two Green’s function lines for Bogoliubov quasiparticles
(Fig. 1a). The vertex renormalization includes correc-
tions for Cooper-pair-producing attractive interaction as
well as the repulsive Coulomb interaction, the Dyson
equation for the vertex Λk in the limit q → 0 is given
by Fig. 13 in Ref. 10.

To show more clearly the effect of screening, we write
the equation for the Raman susceptibility as given in
Fig. 1b and 1c. Figure 1b (with a = γk and b = γk)
shows the unscreened susceptibility χγγ given by a bare
polarization bubble with two Raman vertices γk and the
contraction of a BCS-like ladder sum with two Raman
vertices. Therefore, χγγ includes the attractive Cooper-
pair-producing interaction. We include Coulomb screen-
ing by virtue of a RPA-like sum given in Fig. 1c. The
effect of screening on the electronic Raman scattering
can now easily be seen.9 If we denote by χab a bubble,
renormalized by pairing interaction, with vertices a and
b at the ends as in Fig. 1b, the RPA-chain can be easily
summed up (see Fig. 1c) yielding

χRaman(q → 0, ω) = χγγ(ω) −
χ2

γ1(ω)

χ11(ω)
, (14)

where terms of order q2 have been dropped. In Eq. (14)
we have used the fact that Vq/(1 − χ11Vq) equals

−χ−1
11 (1−1/ε), and the factor (1−1/ε) is 1+O(q/qTF )2.

Without taking into account Coulomb interaction,
the Green’s functions have a well-known massless pole
(Goldstone mode) which is a consequence of the break-
ing of gauge symmetry in the superconducting phase.26

Coulomb interaction makes this pole acquire a finite mass
(which can be shown to correspond to the plasma fre-
quency), so if we correctly include Coulomb screening

(not done in Ref. 27) we no longer have a Goldstone
mode, but a massive Anderson-Bogoliubov mode. This
mode has the energy h̄ωp (ωp is the plasma frequency) at
the Γ point and is therefore negligible for the low energy
behavior of the Raman spectra.

The susceptibilities χab in Fig. 1b are like a ladder sum
contracted with vertices ak and bk and can be written as
a sum

χab(q=0, ω) =
∑

k

akbkλk(ω) (15)

which involves the Tsuneto function18 λk(ω). For small
values of q (compared to the inverse coherence length ξ
and the Fermi wave vector kF ), the attractive interaction
does not have to be taken into account in the summation
of the ladder, and the Tsuneto function is given simply
by a unmodified bubble and can be evaluated easily to
be

λk(ω) =
∆2

k

E2
k

tanh

(

Ek

2T

)

×

×

(

1

2Ek + ω + i0
+

1

2Ek − ω − i0

)

. (16)

Equation (16) involves the gap function ∆k (which de-
pends on the temperature) and the quasiparticle disper-
sion relation E2

k = ξ2
k + ∆2

k with ξ2
k = (ǫk − ǫF )2. The

constants h̄ and kB have been set equal to 1. As al-
ready mentioned, vertex corrections due to the pairing
interaction are neglected. This approximation is valid
for q ≪ ξ−1, kF (Ref. 13) and ω ≪ ωp, because the
Anderson-Bogoliubov pole at the plasma frequency need
no longer be included.

A first and very important fact in the expressions above
is that they contain only the absolute square of the gap
function, i.e. Raman scattering is not phase sensitive,
and consequently cannot distinguish between a strongly
anisotropic s gap

∣

∣dx2−y2

∣

∣ and a dx2−y2 gap.
In the preceding calculation of the unscreened correla-

tion functions χab, we have neglected impurity scattering
as well as scattering between quasiparticles (collisionless
regime). In isotropic s-wave superconductors at T = 0
and for Raman shifts ω ≪ 2∆, it is perfectly reasonable
to neglect impurity scattering, because in this regime pair
breaking is not possible.28 Also, the scattering between
quasiparticles can be neglected because their density is
very small for small temperatures T ≪ Tc. For d-wave
superconductors this is no longer true. The effect of im-
purities will be discussed in the next subsection, whereas
a discussion about scattering between quasiparticles can
be found in Sec. V.

The second term of (14), representing screening, van-
ishes if the average of γk · λk does. The Tsuneto func-
tion is fully symmetric, i.e. has A1g (D4h group) or Ag

(D2h) symmetry regardless of gap symmetry. As a con-
sequence, the screening term vanishes unless the Raman
vertex has the same symmetry as the crystal. In the
tetragonal case, A1g-like vertices are screened, but B1g-

5



and B2g-like are not. This is different for orthorhom-
bic HTSC of the YBCO-type. In this case the Tsuneto
function has A1 symmetry, and the same is true for the
dx2−y2-like component of the mass (B1g of D4h group, Ag

of D2h). Consequently, in these orthorhombic crystals,
the B1g component is also screened. This discussion is
also applicable to BISCO, but with interchanged roles of
B1g and B2g modes because of the different orientation
of the crystallographic unit cell with respect to the Cu-O
bonds.

In tetragonal systems, the B1g component of the Ra-
man vertex has nodes at the same position as the gap
function. This has severe consequences for the low-energy
part of the spectra.13 In two dimensions, the existence of
the nodes of the gap function in the case of a dx2−y2 gap
results in a linear density of states at low energies. If
the vertex has a finite value in this region, the imaginary
part of the Raman susceptibility is also linear in the fre-
quency. If the vertex has a node, however, its magnitude
squared becomes quadratic with respect to the gap on
the Fermi surface. This causes two additional powers of
the frequency to appear, the B1g component of the scat-
tering efficiency is cubic at low frequencies.5 Two effects
can alter this behavior: an orthorhombic distortion and
impurities.

In our calculations, we focus on a dx2−y2-like gap func-
tion which is only a function of the direction in k-space,
but not of the magnitude of k, since the values of the gap
functions sufficiently far from the Fermi surface do not
affect the results. We are using the same gap function
for all bands involved.

A. Effect of impurities

In contrast to scattering at non-magnetic impurities in
conventional (isotropic) superconductors, the influence of
impurity scattering plays an important role for supercon-
ductors with anisotropic gaps and its effect on the Ra-
man spectrum is most pronounced for superconductors
which exhibit regions in k-space where the gap almost
or completely vanishes. It was shown29,22 that in the
case of d-wave pairing, impurity scattering can be de-
scribed by extending the nodal points on the 2D FS to
small finite regions with vanishing gap. This causes a
nonvanishing density of states at the Fermi energy. For
anisotropic s-wave pairing the gap anisotropy becomes
smeared out leading to an increase of the minimum gap
value ∆min. In the case of a

∣

∣dx2−y2

∣

∣ gap, this minimum
gap increases monotonically with the impurity concen-
tration ni for small values of ni.

The renormalization of the gap function by the pres-
ence of impurities causes an additional contribution,
which is linear in the Raman shift ω for small Raman
shifts ω, in the Raman spectra.22 This has consequences
for the B1g spectrum of a tetragonal crystal, which, ac-
cording to the theory, has a cubic ω-dependence, because

a linear frequency dependence is added. As will be dis-
cussed in the next subsection, the orthorhombicity of the
YBCO compounds also causes a linear addition to the
cubic behavior of the B1g channel spectrum.

In the case of a
∣

∣dx2−y2

∣

∣-like, Ag symmetry gap func-
tion the impurity-induced minimal gap ∆min causes an
excitation-free region to show up in the electronic Raman
spectrum below a Raman shift of 2∆min.

B. Effect of orthorhombic distortion

As already mentioned, orthorhombic distortions, i.e.
deviations from the tetragonal symmetry, have a dif-
ferent effect on Y-123 and on Bi-2212. Consider the
B1g (D4h) component of the inverse mass tensor in a
tetragonal high-Tc superconductor with a dx2−y2-like gap.
The B1g (D4h) mass has its nodes in directions diagonal
to the axes of the copper planes; the same is true for
the gap function. As mentioned above, this results in
the ω3-dependence of the Raman efficiency for B1g (D4h)
scattering, in contrast to the ω-dependence predicted for
A1g and B2g scattering. Let us now consider the or-
thorhombic distortion present in Y-123. The zeros of the
B1g (D4h) mass shift because there are no longer mirror
planes through the (110) axes. For this reason, the low-
energy part of the spectrum acquires a linear component
in addition to the ω3 component of the D4h case.

In Bi-2212 the situation is different because the or-
thorhombic crystallographic cell is rotated by 45◦ with
respect to the a- and b-axes: the orthorhombic distor-
tion preserves the mirror planes [a± b, c]. Consequently,
the B1g zeros stay at the same position, the low-energy
efficiency acquires no linear component.

C. Effect of multilayers

In systems with one layer of Cu-O2 planes per unit
cell there is only one sheet of Fermi surface and the
mass fluctuations are essentially intraband mass fluctua-
tions, which are very sensitive to the scattering polariza-
tions. The scattering related to the average mass is fully
screened. The simplest A1g (D4h) scattering is related
to a Raman vertex of the form cos 4φ symmetry while
B1g (D4h) scattering is obtained for a cos 2φ vertex. In
multilayer systems, interband fluctuations between the
various sheets FS are also important. The lowest compo-
nent of such fluctuations corresponds to different average
masses in each FS sheet. Such fluctuations do not depend
on the scattering polarizations and lead to unscreened
scattering of Ag symmetry.
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D. Effect of sign change of γk on the Fermi surface

The behavior of the Raman vertex near the Fermi sur-
face, especially its sign, is crucial for the scattering effi-
ciency and, in particular, for the effect of screening. Anti-

screening, i.e. an enhancement of the scattering efficiency
by screening, can occur if the Raman vertex changes sign
on the Fermi surface. This can be seen by considering the
screening part

Im χScr = − Im
χ2

γ1

χ11
(17)

of the Raman susceptibility. A positive value of ImχScr

enhances the efficiency, i.e. corresponds to antiscreening.
To show how antiscreening arises, we first write the

screening term Im χscr in terms of the real and imaginary
parts λ′ ≡ Re λ and λ′′ ≡ Im λ of the Tsuneto function
and the Raman vertex γ as

Im χScr =
〈γλ′〉

2
〈λ′′〉 − 〈γλ′′〉

2
〈λ′′〉 − 2〈γλ′〉〈γλ′′〉〈λ′〉

〈λ′〉
2

+ 〈λ′′〉
2 .

(18)

The imaginary part of the Tsuneto function λ′′ is a posi-
tive δ-function. Consequently, the quantity 〈λ′′〉 is a pos-
itive function of the Raman shift ω. If γk changes sign
in a region around the Fermi surface, it is possible that
〈γλ′′〉 changes sign as a function of ω, i.e. has a zero. At
the position of this zero, the second and the third term in

the numerator of (18) vanish. The first term, 〈γλ′〉
2
〈λ′′〉,

is positive and can become dominant in Eq. (18). In this
case antiscreening results. In the Appendix A will be
shown that antiscreening is particularly sensitive to the
sign of the Raman vertex on parts of the Fermi surface
around the directions of the nodes of the gap function
∆k.

V. THEORY: NORMAL PHASE

In the normal phase, the exact mechanism which
produces a finite Raman intensity almost constant
over a broad frequency and temperature range, is
not known. Therefore, we assume some scatter-
ing mechanism, which implies a finite lifetime of the
quasiparticles. Candidates for this scattering are the
quasiparticle-quasiparticle scattering in Marginal Fermi
Liquid theory20 (MFL), impurity scattering30 or scatter-
ing due to spin fluctuations.31 A self energy with non-
vanishing imaginary part yields a susceptibility of the
form

χab(q=0, ω) =
∑

k

akbkνk(ω) (19)

with the relaxation kernel (the function f ′ is the deriva-
tive of the Fermi function with respect to the energy)

νk(ω) = −f ′(ξk)
iΓk

ω + iΓk

(20)

and its imaginary part

Im νk(ω) = −f ′(ξk)
ωΓk

ω2 + Γ2
k

. (21)

This can easily be seen by evaluating a bubble with two
Greens function lines for quasiparticles with an imagi-
nary part Γk of the self energy.

Note that in the superconducting phase for Raman
shifts larger than ∼ ∆, the relaxation effects described
by (21) are also of importance. The relevant relaxation
kernel in this case is

νk(ω) = −f ′(Ek)
ξ2
k

E2
k

iΓk

ω + iΓk

, (22)

where ξ2
k = (ǫk − ǫF )2.

To describe the constant background in the Raman
spectra in the normal phase, one has to adopt the quasi-
particle scattering rate of the MFL theory20,21

Γk(ω) ∼ max(αT, βω) . (23)

In order to evaluate the real part of νk using causality
arguments, and to prevent divergences, we introduce a
high-frequency cutoff ωC . Note that the nearly antiferro-
magnetic Fermi liquid32,33 (NAFL) and also the nested
Fermi liquid34 (NFL) yield a very similar quasiparticle
scattering rate. The former can also provide a mecha-
nism, which accounts for dx2−y2 pairing. Similar results
are obtained with Luttinger liquid based results.19

Equation (23) yields a scattering continuum which is
constant for frequencies smaller than min(αT/β, T ) and
for frequencies larger than the temperature T , but with
different intensities. In the first case, Γk is proportional
to the temperature, i.e. Imχ ∼ ω/T . Multiplying by the
Bose factor 1 + nω ∼ T/ω a constant is found. In the
second case, Γk ∼ ω, and, consequently, Imχ = const.
The Bose factor is also constant and one is left with a
constant Raman intensity. Note that in the first case,
Im χ cancels the ω- and T -dependence of the Bose fac-
tor. It has been shown,35,36,21 that YBa2Cu4O8 does
not exhibit this behavior. This has been attributed to
the breakdown of MFL theory for not optimally doped
cuprates.21 Actually, in this case the spectra are nearly
temperature independent after dividing them by the Bose
factor. We shall address this question once more at the
end of this section.

To discuss quasiparticle-quasiparticle (qp-qp) scatter-
ing, and its influence on electronic Raman scattering, we
start with the case of a dx2−y2 gap. Suppose the nodes
of this gap have a width δ0 in k-space on the Fermi sur-
face due to impurity scattering. We use the model of
Eq. (22) with a quasiparticle scattering rate Γk indepen-
dent of k and discuss first the case T = 0. Then it can
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be seen that the contribution of qp-qp scattering to the
imaginary part of the Raman susceptibility (12) for low
frequencies ω ≪ ∆max is proportional to the Drude-like
factor ωΓ/(ω2+Γ2) (which is, for small ω and low temper-
atures T < ω, linear in ω if Γ = const (semiconductors)
or Γ ∼ max(ω2, T 2) (FL), but constant as a function of
ω if Γ ∼ max(ω, T ) (MFL). In the tetragonal case, it is
also proportional to the density of states at the Fermi
surface and in the case of A1g and B2g polarizations to
the width δ0, and in the case of B1g to the third power δ3

0

of the width δ0. The discussion for BISCO is analogous
with the exception that B1g and B2g exchange their role.

Finite, but small temperatures T ≪ ∆max have the
effect of enlarging the widths δ0 linearly in temperature,
i.e. the temperature dependence of the contribution from
qp-qp scattering is proportional to const + T . Note that
for T >∼ 0, the Bose factor changes the linear-in-ω depen-
dence to a constant.

For the anisotropic s gap of the form
∣

∣dx2−y2

∣

∣ which
acquires a finite minimum gap ∆min due to the presence
of impurities,22 the situation is different. The frequency
dependence is also given by the factor ωΓ/(ω2 + Γ2) in
addition to the Bose factor. But the temperature depen-
dence is different. For temperatures T ≪ ∆min smaller
than the minimal gap, the density of quasiparticles is
proportional to exp(−∆min/kT ), i.e. the contribution of
qp-qp scattering to the Raman efficiency is exponentially
small. At kT ≈ ∆min, this exponential dependence on T
crosses over to a power law.

The background electronic Raman spectrum in the
normal phase is almost independent of temperature for
nearly optimally doped high-Tc compounds only. In the
overdoped and underdoped case, the materials seem to
show Fermi liquid-like behavior concerning the quasipar-
ticle scattering rate Γk (for small ω).21,36 The temper-
ature dependence of the scattering rate Γk, as defined
in (22), has been measured37 for optimally doped and
overdoped Bi-2212, and, especially in the case of the
B2g (D4h) mode, the optimally doped sample shows Γ =
αT , whereas for the overdoped sample Γ = α′T 2 + Γ0.
Therefore, the overdoped sample shows properties of a
normal Fermi liquid which are predicted by theory to
have Γ ∼ max(ω2, T 2). The B1g (D4h) mode result for
the optimally doped sample yields the puzzling quasipar-
ticle scattering rate Γ = const.

VI. EXPERIMENTAL SPECTRA

The experimental determination of absolute Raman
scattering intensities is plagued by a number of difficul-
ties (a reason why usually “relative units” are found in
the literature). The first is related to the presence of
elastically scattered light in the spectra, in particular
when non-ideal sample surfaces are involved. Depend-
ing on the quality of the spectrometer this leads to con-
tributions extending typically, for the parameters of the

present work, up to 50 cm−1 from the center of the laser
line. These contributions can be filtered out using a pre-
monochromator or notch filters but, in any case, Raman
scattering measurements below 50 cm−1 remain difficult.
The measurements discussed here have been performed
by comparison with the known efficiency of silicon after
correcting for differences in the scattering volumes. The
procedure leads to errors of about 50%.

We use for comparison with the calculation the exper-
imental data of Krantz et al.6 in the case of Y-123, and
Donovan et al.35 in the case of Y-124. Our Figs. 4 and 5
are taken from these publications. In the case of Fig. 4
we have corrected a scale error in the abscissa found in
Ref. 6. In the case of Fig. 5 we have calculated the A1g

component from the experimental results for the (x′x′)
and (xy) polarizations.

The classification of the measured spectra according to
irreducible representations of the symmetry group of the
crystal is performed with the use of the Raman tensor R̂
which is related to the Raman efficiency through the ex-

pression I ∼ |eLR̂eS |
2
, bilinear in the Raman tensor. In

the calculations, the Raman tensor does not appear ex-
plicitly, the inverse effective mass ∂2E/(∂ki∂kj) playing
its role. It is important to note that the Raman efficiency
as given by the theory (Eqs. (11), (13), and (14)) is bi-
linear in the inverse effective mass of the Raman vertex
(including the screening part!), i.e. contains the same in-
terferences as the approach involving the Raman tensor.
Note that the Tsuneto function λ is fully symmetric. In
the normal phase, the scattering kernel ν has been as-
sumed to be the same for all scattering channels.

In most of the measurements of the Raman efficiency
in orthorhombic high-Tc superconductors, an A1g com-
ponent has been given. Strictly, this irreducible repre-
sentation does not exist in D2h but only in D4h. In
orthorhombic crystals, the Raman tensor contains two
Ag components which correspond to the A1g and B1g

components of the tetragonal D4h case, and which are
not distinguishable in D2h because they transform in the
same way. Nevertheless, quantities can be constructed in
the orthorhombic case which correspond to the tetrago-
nal A1g component.

One of these is I(1) = (Ixx + Iyy)/2 − Ix′y′ . Both, Ixx

and Iyy contain A1g and B1g (D4h), and also an inter-
ference term which cancels when Ixx and Iyy are added.
The Ix′y′ efficiency contains B1g and A2g (D4h). If we as-
sume that the antisymmetric component (A2g in D4h) of

the Raman tensor R̂ vanishes (i.e. Ixy = Iyx), Ix′y′ corre-
sponds to tetragonal B1g and cancels the B1g contribu-
tion in Ixx and Iyy . Provided that the A2g component of

the Raman tensor vanishes, I(1) corresponds to the IA1g

of the tetragonal case. Note that the antisymmetric com-
poment (Rxy − Ryx)/2 of the Raman tensor vanishes in
the effective mass vertex theory given in Sec. III because
of γxy = γyx regardless of the symmetry of the crystal,
and also in the experiment in the case of tetragonal crys-
tals but not necessarily for orthorhombic crystals. The
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equality of Ixy and Iyx in the calculation is an artifact of
the theory.

A second possible construction for A1g is I(2) = Ix′x′ −
Ixy. The Ix′x′ efficiency contains A1g and B2g contribu-
tions. The interference term of these two contributions
vanishes in the tetragonal as well as the orthorhombic
case. Both, B2g (D4h) and A2g are contained in Ixy. But

if the A2g component of the Raman tensor vanishes, I(2)

also corresponds to the IA1g
of the tetragonal case. In one

of the experimental works6 a different method to extract
the A1g component was used. Both of the expressions for

I(1) and I(2) contain contributions of the A2g (D4h) Ra-
man tensor component. This component may be present
in the experiment, but not in the theory, a fact, that
has to be kept in mind when comparing the numerical
results to the measurements. Note that the Raman ef-
ficiencies in (xy) and (x′y′) polarization configurations
also contain contributions from the antisymmetric part
of the Raman tensor. In view of these uncertainties in
A1g we mainly focus in the next section on the directly
observable components of the Raman tensor.

We shall conclude this section by taking up again the
question of the validity of the effective mass approxi-
mation. In the experiment, this can be checked in two
ways. First, via the dependence of the spectra on the
laser frequency which should make it possible to distin-
guish the contributions to the Raman efficiency resulting
from resonant and non-resonant transitions, respectively.
The second way involves the measurement of the A2g

component of the mass. If the effective mass approxi-
mation is valid, the Raman vertex should be symmetric
(γxy = γyx), i.e. the A2g (D4h) component should van-
ishes. A non-vanishing A2g component of the measured
scattering would cast doubts on the appropriateness of
the effective mass approximation.

VII. NUMERICAL RESULTS AND DISCUSSION

To carry out the numerical BZ and FS integrations,
we employed a tetrahedron approach.38,39 The conver-
gence of the integrations was checked by using different
meshes. In Figs. 2 and 3, the results of full BZ integra-
tions for Y-123 and Y-124, respectively, are plotted. The
corresponding spectra obtained through FS integrations
can be seen in Ref. 19. The Bose factor has not been in-
cluded, hence the results apply to zero temperature. In
both figures, the Raman shift is given in units of the gap
amplitude ∆0. Since the calculated scattering efficiencies
for BZ integrations, contrary to FS integrations, are not
only a function of the reduced frequency but depend also
weakly on the value of ∆0, we took for the calculations
∆0 = 220 cm−1. This value of ∆0 falls in the range of
∆0’s determined by Raman scattering and other meth-
ods. The delta-function peaks in the Tsuneto function
have been broadened phenomenologically by introducing
a finite imaginary part Γ = 0.3∆0 of the frequency vari-

able ω.

Figures 2 and 3 display spectra for each of the polar-
ization configurations (yy), (x′x′), (xx), (x′y′), and (xy),
as well as the symmetry component A1g (D4h) (defined
by IA1g

= Ix′x′ − Ixy), the unscreened intensities, the
screening part (17), and the total intensities, equal to
the difference between unscreened and screening parts.
Note that the (x′y′) configuration corresponds to the
B1g (D4h) component because of the vanishing of the A2g

component in the theory.

We discuss first the results for Y-123. The A1g compo-
nent (in the rest of this section we use tetragonal nota-
tion unless explicitly stated) is subject to rather strong
screening, however its unscreened part is comparable to
that of the B1g component. The relation between the un-
screened and the screened (total) spectral weight of the
A1g component is about three. Nevertheless, the shapes
of the unscreened and the screened parts are the same
and, consequently, there is almost no shift in the peak po-
sition due to screening (contrary to the results of Ref. 5).
The peak is located almost exactly at 2∆0. Note that
there is no antiscreening in the A1g component. The low-
energy part of all A1g spectra (screened and unscreened)
is linear, as predicted by the theory.

As already mentioned, the (x′y′) component (equal to
the B1g component in the non-resonant case) is almost
four times stronger than its screened A1g counterpart.
The screening is very small, its nonvanishing being an
effect of the distorted tetragonality of the crystal. There
is, in this case, a very small amount of antiscreening in
the region below 2∆0. As in the case of the A1g com-
ponent, the (x′y′) component peaks at almost exactly
the 2∆0 frequency shift. The low-frequency part has an
αω + βω3 frequency dependence, the linear part arising
from the distorted tetragonality, i.e. the fact that the B1g

mass does not vanish at exactly the same position on the
Fermi surface as the gap function does.

The efficiency of the peak in the (xy) configuration
(equal to the B2g component in the non-resonant case) is
also four or five times smaller than that of the A1g peak.
The (xy) peak is located at about 1.3∆0, as expected
from the fact that in the neighborhood of the region
where the gap is large, the B2g mass vanishes. Conse-
quently, the peak is not as sharp as in the former cases
and screening vanishes since these spectra correspond to
a nonsymmetric (B1g) representation of the orthorhom-
bic group (D2h).

In the A1g and (x′y′) spectra there should be a small

peak at about ω = 2
√

ǫ2vH + ∆2
max ≈ 3.9∆0 due to the

van Hove singularity on the kx-axis near the X point.
The corresponding structure, however, is very weak, and
practically invisible in Fig. 2. This is not unexpected for
a 3D calculation. These peaks appear strongly when 2D
calculations are performed through BZ integrations.27

In general, the efficiencies in Y-124 (Fig. 3) are about a
factor of three less than those for its Y-123 counterpart.
Moreover, the screening of the A1g component of Y-123
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is much stronger than that of Y-124. This may be, at
least in part, due to the additional chain band: The (yy)
component of Y-124 is less screened than the (yy) com-
ponent of Y-123. At low frequencies, we correspondingly
have antiscreening even in A1g, a fact which reveals a
change of sign of the effective mass on the Fermi surface
(see Sec. IVD). Due to this antiscreening, the peak in
the A1g spectrum is shifted from 2∆0 towards approx-
imately 1.6∆0. In contrast to the situation in Y-123,
the Y-124 spectra show clearly the influence of the van
Hove singularity on the spectra, as a small hump (vH)

located near 2
√

ǫ2vH + ∆2
max ≈ 7∆0. In the A1g spectrum

this hump is almost screened out whereas in the (x′y′)
spectrum it appears slightly increased by the influence of
antiscreening.

To compare these predictions with the experiment let
us first focus on the peak positions. The experimental
results for Y-123 (Fig. 4, lower part) clearly show that
the position of the (yy), (x′x′) and (xx) peaks is at about
300 cm−1, whereas the (x′y′) peak is located at 600 cm−1,
i.e. at twice the frequency of the former. This fact is in
sharp contrast with the calculated spectra and has been
at the center of the controversy concerning the topic at
hand.40,12 It has been suggested by Devereaux et al.5,12

that the B1g component peaks at 2∆0, and the A1g com-
ponent becomes shifted down to almost ∆0 by the screen-
ing. This interpretation contradicts our numerical results
which clearly suggest that the influence of screening on
the position of the A1g mode is usually smaller. The
frequency renormalizations of phonons around Tc also
seem to contradict the interpretation in Refs. 5 and 12.
It has been shown41 that lowering the temperature of
the sample in the superconducting phase causes the A1g

435 cm−1 phonon (plane-oxygen, in-phase) to shift up in
frequency and the B1g (D4h notation) 340 cm−1 phonon
(plane-oxygen, out-of-phase) to shift down. This, in turn,
implies an amplitude of the gap 2∆0 between 300 cm−1

and 360 cm−1 and is consistent with our interpretation of
the electronic Raman spectra with the A1g peak at 2∆0.

Note that the (yy), (x′x′) and (xx) spectra do not con-
tain contributions of the A2g (D4h) antisymmetric com-
ponent of the Raman tensor while the (x′y′) component
does. So, the experimental results may suggest that the
shift of the position of the (x′y′) spectrum with respect
to the peak position of the other spectra is due to res-
onance effects. The (xy) spectrum is also influenced by
the A2g component. It is difficult to determine its peak
position from Fig. 2, but it seems to be located at the
same position as that of the (yy), (x′x′) and (xx) con-
figurations. The calculation predicts it to be located at
about 1.3∆0, the shift to 2∆0 can also be attributed to
the existence of an A2g component, like in the case of the
(x′y′) configuration.

To compare the relative intensities of the spectra with
different polarizations, we refer to Table II, which lists
them together with the corresponding absolute intensi-
ties, both at the peak position. The detailed results of

our FS integration have already been reported earlier.19

We begin with Y-123 (upper panel in Table II) and com-
pare BZ integration results to the experimental ones.
With the possible exception of the A1g component (and
the (x′x′) component, which is very similar to A1g), the
agreement is rather good. The deviation of the A1g com-
ponent may be attributed to screening, which is very sen-
sitive to sign changes and other details of the Raman ver-
tex near the Fermi surface (such as details of the band
structure and especially the exact position of the Fermi
energy).

The second compound, Y-124 (lower panel in Table II),
also shows reasonable agreement between the results of
the BZ integration and the experiment. However, we
also have problems with the A1g component, as we did
for Y-123.

The measured absolute intensities agree particularly
well with the calculations in the case of Y-123. With the
exception of A1g, the discrepancy between theory and
experiment is only a factor of two, which can easily be
related to the difficulties in measuring absolute scatter-
ing cross sections. In the case of Y-124, the discrepancy
is a bit larger, but a factor of four can still be considered
good. We should also keep in mind that resonances of ωL

or ωS with virtual interband transitions are expected to
enhance the simple effective mass Raman vertex, a fact
which could also explain why the measured scattering
efficiencies are usually larger than the calculated ones.

We close the discussion of the numerical results with a
remark about the Fermi surface integration. For Y-124,
the results of the former correspond rather closely to the
results from the BZ integration. The situation is different
for Y-123. Here, the (xx) peak height is almost a factor
four larger in the FS integration than in the BZ integra-
tion. This is likely to result from the close proximity of
the van Hove singularity to the FS in the case of Y-123
(25 meV), as compared to Y-124 (110 meV).

To verify the predictions related to the effect of or-
thorhombic distortions as discussed in Sec. IVB, we per-
formed a fit of the function αω+βω3 to the low-frequency
part of the B1g data for Y-123 reported in Ref. 6 and
Ref. 42 as well as for Bi-2212 (taken from Ref. 43) and to
the results of our numerical calculations for Y-123. The
ratios of the cubic vs. the linear part (at ω = 300 cm−1)
of the fit to the low-frequency efficiency are given in Ta-
ble II.

Both measurements for Y-123 agree in their large lin-
ear part, which should be due mainly to the lack of exact
tetragonality and the presence of impurities. The results
of the BZ integration show a smaller linear part, because
they do not take into account the influence of impurities.
Finally, the result for Bi-2212 is completely different from
the former results for Y-123. The linear part almost van-
ishes, in agreement with the preceding discussion.
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VIII. CONCLUSIONS

In spite of the striking ability to predict not only gen-
eral features of the observed spectra but also their peak
intensities, our calculations are not able to predict the
relative positions of the A1g and B1g peaks. Accord-
ing to Figs. 2 and 3 the A1g spectrum should peak only
slightly below 2∆0 while B1g should peak at 2∆0. The
experimental data of Figs. 4 and 5, however, indicate
that the B1g spectra peak nearly at twice the frequency of
A1g. Since the observed A1g peak is considerably sharper
than that of B1g, we may want to assign the A1g peak to
2∆0. Our calculations show that it is impossible to repro-
duce both peak frequencies with a simple gap of the form
∆0 cos 2φ where φ is the direction of the k-vector. A rea-
sonable fit was obtained in Ref. 6 with a two-dimensional
FS which did not take into account the chain component
and assigned d- and s-like gaps to the two bonding and
antibonding sheets of the FS of the two planes in an ad

hoc way. Within the present 3-dimensional band struc-
ture the FS cannot be broken up into bonding and anti-
bonding plane and chain components since such sheets
are interconnected at general points of k-space. It is
nevertheless clear that there is no reason why the gap
function should be the same in the various sheets for a
given k-direction. Thus the remaining discrepancy in the
peak positions between theory and experiment could be
due to a more complicated ∆nk than a simple ∆0 cos 2φ
used here. Another possible source of this discrepancy
is scattering through additional excitations of a type not
considered here (e.g. magnetic excitations) contributing
to and broadening the B1g peak.

A BCS-like theory, which involves an attractive pairing
potential as well as the repulsive Coulomb potential and
uses an anisotropic dx2−y2-like gap function in connection
with the effective mass approximation used in the calcu-
lation of the absolute Raman scattering efficiencies yields
result which are in significant agreement with the experi-
mental spectra. One exception, the peak positions of the
A1g and the B1g components, remains unexplained. The
theory predicts them to be both located near ω = 2∆0,
but the experiment shows the peak in B1g at almost twice
the frequency of the peak in A1g. The weak B2g spec-
trum agrees in intensity and peak position with calcula-
tions for a dx2−y2-like gap. The results of other experi-
ments, involving the temperature dependence of phonon
frequencies,41 suggest that the A1g peak position corre-
sponds to the gap amplitude 2∆0. The shifting of the B1g

peak towards higher frequencies may have an origin dif-
ferent from the mass-fluctuation-modified charge-density
excitations described in the theoretical part of this paper
but could also be due to a multi-sheeted gap function,
more complicated than the simple dx2−y2-like ∆0 cos 2φ
gap assumed in our calculations. The initial variation of
the A1g and B1g scattering efficiencies vs. ω are linear as
expected for that gap. The B1g symmetry becomes Ag in
the presence of the orthorhombic distortion related to the

chains. Consequently, the scattering efficiency at low fre-
quency is not proportional to ω3 but should have a small
linear component which is found both in the calculated
and the measured spectra. In the corresponding spec-
trum of Bi-2212, with and orthorhombic distortion along
(x + y), the B1g (D4h) excitations also have a nonsym-
metric B1g (D2h) orthorhombic character. Consequently,
for small ω no component linear in ω is found in the mea-
sured spectra.

We have performed our calculations using either BZ
or FS integration. In the case of Y-124 the spectra so
obtained are very similar. For Y-123 quantitative differ-
ences appear; they are probably related to the presence
of a van Hove singularity close to the FS. These singular-
ities appear as weak structures in the calculated spectra,
as expected for a 3D band structure.
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APPENDIX A: ANTISCREENING AND THE

SIGN OF THE RAMAN VERTEX

In Sec. IV D, we pointed out that the effect of antis-
creening results from sign changes of the Raman vertex
γk, i.e. the inverse effective mass, on the Fermi surface. In
this appendix we present a different proof using a power
expansion of γk.

For very low frequencies ω ≪ ∆0, only the regions
around the node directions of the gap function (we as-
sume a dx2−y2-like gap) contribute to the susceptibility.
We focus on a specific node of the gap function and
define the point k0 as the point of intersection of the
node line of the gap function and a specific sheet of the
Fermi surface. Then we introduce an orthogonal coor-
dinate system {k, k⊥} in the a-b-plane in k-space with
the origin at k0, rotated in such a way that the k⊥-
axis is perpendicular to the node line (i.e. tangent to
the Fermi surface). We write the Raman vertex as a se-
ries γ(k) =

∑

i γi(k⊥/kc)
i (where kc is a cutoff), using

the assumption that ∂γ/∂k = 0. This approximation
is justified since contributions to the Raman susceptibil-
ity mostly arise from a narrow region around the Fermi
surface). We write Eq. (18) as

Im χScr =
∑

i

Im χ
(i)
Scr , (A1)

whereas Im χ
(i)
Scr contains i-th powers in k⊥ from the ex-

pansion of γk. The first three terms in this sum are
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Im χ
(0)
Scr = −γ2

0〈λ
′′〉

Im χ
(1)
Scr = −2γ0γ1〈k⊥λ′′〉 (A2)

Im χ
(2)
Scr = −2γ0γ2

〈

k2
⊥

λ′′
〉

−γ2
1

〈λ′′〉(〈k⊥λ′′〉
2
− 〈k⊥λ′〉

2
) + 2〈λ′〉〈k⊥λ′〉〈k⊥λ′′〉

〈λ′〉
2
+ 〈λ′′〉

2 .

Now we investigate the behavior of
〈

ki
⊥

λ′′
〉

in the low
frequency limit. We set vF = 1 and ∆0 = 1 (this repre-
sents a simple change in scales). Then, Ek = k (Ek is
constant as function of k⊥ by definition), ∆k = k⊥, and
therefore ∆2

k/E2
k = k2

⊥
/k2 and λ′′ ∼ (k⊥/k)2 · δ(2k − ω)

from Eq. (16). We perform a 2D BZ integration which
has to be cut off at a value proportional to ω in the k⊥
integration and find

〈

ki
⊥

λ′′
〉

∼

∫

dk⊥ dk ki
⊥
·
k2
⊥

k2
δ(2k − ω)

∼ ω−2

∫ ω

dk⊥ ki+2
⊥

∼ ωi+1 (A3)

as the low frequency behavior. The same is true for the
real part

〈

ki
⊥

λ′
〉

. Note that the proportionality constant

in (A3) is positive. This implies that Imχ
(i)
Scr ∼ ωi+1 and

Im χScr = −
(

α0γ
2
0ω + α1γ0γ2ω

2 + (α2γ0γ2 + α3γ
2
1)ω3

+O(ω4)
)

(A4)

with positive constants α0, α1 and α2. The sign of α3

depends on the specific case.
For a tetragonal Fermi surface, we only have to focus

on the A1g mode because the screening contributions to
the other components vanish by symmetry. The A1g sym-
metry implies γ1 = 0 because of the σd symmetry opera-
tion (reflection at ΓS) which transforms γ1k⊥ → −γ1k⊥.
Then, the screening term for low frequencies can be writ-
ten as

Im χScr = −
(

α0γ
2
0ω + α2γ0γ2ω

3 + · · ·
)

. (A5)

If there are nodes in the Raman vertex near the node
of the gap function, then γ0γ2 < 0, i.e. the screening
term is negative for very small ω, but eventually crosses
zero because of the ω3 contribution. For large ω >∼ 2∆0,

the approximation 〈γλ〉 ≈ 〈γ〉〈λ〉 yields χScr = −〈γ〉
2
χ11,

which is the screening term for an isotropic Fermi surface
with a scalar Raman vertex 〈γ〉, and therefore negative.
If the Raman vertex does not show nodes near the node
of the gap function, γ0γ2 is larger than zero, and the
screening term is not likely to change sign.

In the orthorhombic case of a weakly distorted tetrago-
nality, the B1g (D4h) zero in the Raman vertex may shift
with respect to the gap node. This can be described by
a small γ0 6= 0 and γ1 6= 0; γ2 can be neglected. The low
frequency screening term then has the form

Im χScr = −
(

α0γ
2
0ω + α1γ0γ1ω

2 + α3γ
2
1ω3 · · ·

)

. (A6)

The first an the third term have almost A1g symmetry
whereas the second term has almost B1g (D4h) symmetry.
It can be shown that the term proportional to ω2 van-
ishes if the other nodes of the gap function are taken into
account. Whether antiscreening exists or not depends on
the sign of α3.

It can be seen that for small values of γ0, the antis-
creening can start already at very small Raman shifts as
is the case in the calculations, Fig. 3, B1g panel.
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13, 179 (1961).

9 A. A. Abrikosov and V. M. Genkin, Sov. Phys. JETP 38,
417 (1974).

10 M. V. Klein and S. B. Dierker, Phys. Rev. B 29, 4976
(1984).

11 P. B. Allen, Phys. Rev. B 13, 1416 (1976).
12 T. P. Devereaux, D. Einzel, B. Stadlober, and R. Hackl,

Phys. Rev. Lett. 72, 3291 (1995).
13 T. P. Devereaux and D. Einzel, Phys. Rev. B 51, 16336

(1995).
14 M. Krantz, I. I. Mazin, D. H. Leach, W. Y. Lee, and

M. Cardona, Phys. Rev. B 51, 5949 (1995).
15 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
16 O. K. Andersen, O. Jepsen, A. I. Liechtenstein, and I. I.

Mazin, Phys. Rev. B 49, 4145 (1994).
17 O. K. Andersen, A. I. Liechtenstein, C. O. Rodriguez, I. I.

Mazin, O. Jepsen, V. P. Antropov, O. Gunnarson, and
S. Gopalan, Physica C 185-189, 147 (1991).

18 T. Tsuneto, Phys. Rev. 118, 1029 (1960).
19 M. Cardona, T. Strohm, and J. Kircher, in: Spectro-

scopic Studies of Superconductors, ed. I. Bozovic, Proc.
SPIE 2696, 182 (1996).

20 C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abra-
hams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996
(1989).

21 C. M. Varma, Phys. Rev. Lett. 75, 898 (1995).
22 T. P. Devereaux, Phys. Rev. Lett. 21, 4313 (1995).
23 O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
24 V. N. Kostur, Z. Phys. B 89, 149 (1992).
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TABLE I. The ratio between the linear and cubic parts of the low energy Raman efficiency in B1g (D4h) configuration of
several high-Tc compounds at a Raman shift of ω = 300 cm−1.

HTSC cubic:linear in B1g Reference

Y-123 1 Krantz et al.6

Y-123 1 Hackl et al.42

Y-123 0.35 BZ integration
Bi-2212 0.07 Staufer et al.43

TABLE II. Comparison of the experimental peak scattering efficiencies given in units of 10−8 cm cm−1 sr−1 to the theoretical
predictions (from Fermi surface integrations, Ref. 19, as well as Brillouin zone integrations, present work) for Y-123 and Y-124.

Y-123 FS integration19 BZ integration Experiment6

Polarization absolute relative absolute relative absolute relative

yy 20.0 1.00 19.6 1.00 40 1.00
xx 28.0 1.40 7.2 0.37 19 0.48
xy 3.0 0.15 2.5 0.13 4 0.10
x′x′ 5.0 0.26 26 0.65
x′y′ 4.8 0.24 10.6 0.54 12 0.30
A1g 19.2 0.96 3.0 0.15 18 0.45

Y-124 FS integration19 BZ integration Experiment35

Polarization absolute relative absolute relative absolute relative

yy 6.3 1.00 4.4 1.00 18.0 1.00
xx 1.5 0.24 1.4 0.32 7.2 0.40
xy 1.1 0.17 0.5 0.11 2.6 0.14
x′x′ 1.4 0.32 12.0 0.66
x′y′ 2.8 0.44 2.3 0.52 5.6 0.31
A1g 1.1 0.17 1.0 0.23 6.9 0.38

FIG. 1. Incorporation of screening effects into the theory of Raman scattering by electronic excitations in HTSC. The grey
shaded bubbles are sums of ladders contracted with vertices a and b. Wavy lines correspond to the long-range Coulomb
interaction, dashed lines to the attractive pairing interaction. The equation on the last line corresponds to Eq. (14).

FIG. 2. Results from the BZ integration for Y-123. Given in the five panels are absolute efficiencies for electronic Raman
scattering. The upper three curves are labelled using the irreducible representation (D4h) of the scattering mass, the lower
two panels with the polarization geometry. Each of the five panels contains the total absolute Raman efficiency according to
Eq. (11) and (13) and its two constituents, the unscreened and the screening part according to Eq. (14).

FIG. 3. Results from the Brillouin zone integration for Y-124. For details see the caption of Fig. 2.

FIG. 4. Experimental Raman scattering efficiencies for Y-123 from Ref. 6. The vertical scales are absolute Raman efficiencies,
measured at T = 10K and an exciting laser wavelength of λ = 488 nm (Note that a scale error found in Ref. 6 has been
corrected). The A1g component extracted according to IA1g = (Ixx + Iyy)/2− Ix′y′ is plotted in the lower panel together with
the quasitetragonal B1g and B2g components.

FIG. 5. Upper panel: experimental absolute Raman efficiencies given for the five specified polarization configurations
for Y-124 from Ref. 35. These data are taken at T = 10 K with an exciting laser wavelength of λ = 514.5 nm. Lower
panel: smoothed curves and the A1g spectrum additionally extracted from the former. In both panels, consecutive offsets of
0, 1, . . . , 4 × 2.5 cm−1sr−1cm were used.
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