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Scientific knowledge is a body of statements of varying degrees of
certainty—some most uncertain, some nearly sure, none absolutely cer-
tain.

R. P. Feynman

Mathematiker sind eine Art Franzosen. Redet man zu ihnen, so
übersetzen sie es in ihre Sprache und dann ist es alsobald ganz etwas
anderes.

J. W. von Goethe, Maximen und Reflexionen

In mathematics you don’t understand things. You just get used to them.
Johann von Neumann

. . . descubrieron treinta o cuarenta molinos de viento que hay en el
campo, y aśı como don Quijote los vió, dijo a su escudero:

—La aventura va guiando nuestras cosas mejor de lo que ac-
ertáramos a desear; porque ves alĺı, amigo Sancho Panza, dónde se
descubren treinta, o poco más, desaforados gigantes, con quien pienso
hacer batalla y quitarles a todos las vidas, con cuyos despojos comen-
zaremos a enriquecer, que ésta es buena guerra, y es gran servicio de
Dios quitar tan mala simiente de sobre la faz de la tierra.

—¿Qué gigantes? —dijo Sancho Panza.
—Aquellos que alĺı ves —respondió su amo— de los brazos largos

que los suelen tener algunos de casi dos lenguas.
—Mire vuestra merced —respondió Sancho— que aquellos que alĺı

se parecen no son gigantes, sino molinos de viento, y lo que en ellos
parecen brazos son las aspas, que, volteadas del viento, hacen andar la
piedra del molino.

—Bien parece —respondió don Quijote— que no estás cursado en
esto de las aventuras: ellos son gigantes; y si tienes miedo, qúıtate de
ah́ı y ponte en oración en el espacio que yo voy a entrar con ellos en
fiera y desigual batalla.

Miguel de Cervantes, Don Quijote de la Mancha I, Cap. VIII
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Zusammenfassung

Geschichtlicher Überblick

In der Geschichte der Physik hat die Verfügbarkeit neuer Technologien sehr oft die Ent-
deckung neuer physikalischer Phänomene zur Folge gehabt. Als Kammerlingh Onnes im
Jahre 1911 an der Universität zu Leiden den supraleitenden Zustand festen Quecksilbers
entdeckte, war dies möglich geworden, weil er 3 Jahre zuvor erfolgreich Helium verflüssigte.
Flüssiges Helium war der Schlüssel zum Erreichen von Temperaturen welche im Bereich von
wenigen Kelvin liegen. Solche sind notwendig, um die kritische Temperatur Tc, welche den
Phasenübergang zum supraleitenden Zustand markiert, zu unterschreiten.

Für die theoretischen Physiker begann die Suche nach einer Theorie des neuen Zustandes.
Der supraleitende Zustand ist durch zwei grundlegende Eigenschaften charakterisierbar: den
Meissner-Ochsenfeld-Effekt (d.h. das Verdrängen des magnetischen Flusses aus dem Inneren
eines Supraleiters) und dem vollständigen Verschwinden des elektrischen Gleichstromwider-
standes. Ein erster Schritt war gemacht, als 1935 F. und H. London die grundlegenden
elektrodynamischen Eigenschaften des supraleitenden Zustandes mittels der zwei London-
Gleichungen im Rahmen der klassischen makroskopischen Elektrodynamik erklärten.

Zwei weitere wichtige Eigenschaften des supraleitenden Zustandes führten noch näher
an ein theoretisches Verständnis. Daunt und Mendelssohn entdeckten das Verschwinden
thermoelektrischer Effekte und Corak et al. zeigten, daß für Temperaturen, die wesentlich
unterhalb von Tc liegen, die elektronische spezifische Wärme eine exponentielle Abhängigkeit
von der Temperatur aufweist. Diese zwei Effekte legten die Existenz einer Energielücke ∆
zwischen dem Grundzustand des Systemes und seinem Anregungsspektrum nahe. Im Jahre
1950 kam ein weiterer Meilenstein dazu: der Vorschlag von Fröhlich, daß die Elektron-Gitter-
Wechselwirkung von ausschlaggebender Bedeutung für die Erklärung der Supraleitung sein
sollte. Die Entdeckung des Isotopeneffektes (d.h. der Tatsache, daß die kritische Temper-
atur Tc proportional dem Inversen der Quadratwurzel der Isotopenmasse, also zu M−1/2 ist)
kurze Zeit später zeigte, daß Fröhlich mit seiner Vermutung richtig lag.

Der endgültige Durchbruch war jedoch die Formulierung der Theorie der Supraleitung
(BCS-Theorie) durch Bardeen, Cooper und Schrieffer im Jahre 1956. Sie zeigten, daß
der Grundzustand (Fermisee) eines Elektronengases bezüglich einer schwachen attraktiven
Wechselwirkung zwischen Elektronen instabil ist. Solch eine anziehende Wechselwirkung
zieht die Bildung von Cooperpaaren nach sich, das heißt von Paaren aus Elektronen mit
entgegengesetztem Gitterimpuls und Spin. Die räumliche Ausdehnung solcher Paare ist
durch die Pippardsche Kohärenzlänge ξ0 gegeben. Die Theorie sagt in der Tat eine En-
ergielücke 2∆ = 3.528Tc im Anregungsspektrum des supraleitenden Zustandes voraus und
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erklärt die meisten physikalischen Eigenschaften des supraleitenden Zustandes.

Die BCS-Theorie ist eine Theorie der schwachen Kopplung, sie ist nur anwendbar falls die
anziehende Wechselwirkung zwischen den Elektronen schwach ist. Zwar wird der supralei-
tende Zustand der Elementsupraleiter Al, In und Zn ziemlich gut von der BCS-Theorie
beschrieben, die Eigenschaften von Pb und Hg weichen mit 2∆ = 4.3Tc und 2∆ =
4.6Tc jedoch beträchtlich von der Vorhersage der BCS-Theorie ab. Diese Abweichung
ist hauptsächlich eine Folge einer groben Näherung bei der Beschreibung der Elektron-
Elektron-Wechselwirkung in der BCS-Theorie. Die anziehende Wechselwirkung ist eine
Konsequenz des Austausches von virtuellen Phononen und basiert auf Fröhlichs Elektron-
Gitter-Wechselwirkung. Dieser Tatsache wird in der Eliashberg-Theorie Rechnung getragen.
Dort wird die Wechselwirkung mittels der Funktion α2F (ω), welche die durch die Elektron-
Phonon-Kopplungsstärke gewichtete phononische Zustandsdichte darstellt, beschrieben. Die
Vorhersagen der Eliashberg-Theorie für Pb und Hg bezüglich des Quotienten 2∆/kBTc

decken sich mit den experimentell ermittelten Werten.

Die friedliche Zeit der Übereinstimmung zwischen Theorie und Experiment fand mit
der Entdeckung der Schweren-Fermion-Supraleiter, welche nicht im Rahmen der Eliashberg-
Theorie beschrieben werden können, ein jähes Ende. Beispiele für solche Systeme sind
CeCu2Si2 (Tc = 0.7 K) und UPt3 (Tc = 1.5 K); Schwere-Fermion-Systeme enthalten stets
Ionen mit f -Elektronen. Die spezifische Wärme dieser Materialien liegt Größenordnungen
über jener von typischen Metallen, was auf die Existenz von Ladungsträgern mit einer Masse,
die viel größer als die freie Elektronenmasse ist, hinweist. Die spezifische Wärme dieser Sys-
teme scheint bei tiefen Temperaturen einem Potenzgesetz zu folgen. Solch eine Eigenschaft
könnte von einer Lückenfunktion (d.h. einer k -abhängige Lücke ∆k ) herrühren, die auf eini-
gen Punkten (oder Linien) auf der Fermifläche verschwindet. Die sehr niedrigen kritischen
Temperaturen der Schweren-Fermion-Supraleiter sind jedoch für das Experiment sehr prob-
lematisch. Möglicherweise sind diese Materialien aus diesem Grunde fast in Vergessenheit
geraten.

Dies war die Situation, als 1986 Bednorz und Müller am IBM Forschungslabor in
Zürich die epochemachende Entdeckung der Hochtemperatursupraleitung in keramischem
La2−xBaxCuO4 unterhalb einer kritischen Temperatur von etwa 35 K gelang. Schon sehr
bald nach diesem außergewöhnlichen Ereignis wurde die Hochtemperatursupraleitung auch
in YBa2Cu3O7 unterhalb von Tc ≈ 92 K und in vielen anderen in ähnlicher Art und Weise
auf Schichten aus CuO-Ebenen basierenden Materialien nachgewiesen.

Die Tatsache, daß die kritische Temperatur von vielen Hochtemperatursupraleitern höher
als die Siedetemperatur von Stickstoff ist, öffnet den Weg zur technischen Anwendung
der Supraleitung, denn flüssiger Stickstoff ist preiswert und leicht handhabbar. Klare
Nachteile für eine technische Anwendung sind jedoch die im Vergleich zu Metallen sehr
kleine Ladungsträgerdichte, die ausgeprägte Anisotropie der elektronischen Eigenschaften
(aufgrund der Schichtstruktur) und die kleine Kohärenzlänge, welche ein kleines kritisches
Feld Hc,1 mit sich bringt.

Es gibt keine Zweifel, daß die Supraleitfähigkeit der Hochtemperatursupraleiter auf
Cooperpaaren mit einem verschwindenden Gesamtkristallimpuls (das gemessene Flußquant
ist hc/2e) und die sich im Spinsingulettzustand befinden (dies kann aus den Messungen der
Knight-Verschiebung gefolgert werden), basiert. Soweit sind die Hochtemperatursupraleiter
mit der BCS-Beschreibung konsistent.

iv

c© 1999, Thomas Strohm, www.thomas-strohm.de



Zwei andere Typen von Beobachtungen können jedoch nicht mittels einer isotropen Theo-
rie wie der BCS-Theorie erklärt werden. Dies sind Experimente, die sich direkte Folgerungen
aus der räumlichen Symmetrie der Lückenfunktion zunutze machen. Ein gutes Beispiel sind
die Messungen des in SQUID-Ringen (welche aus zwei Stücken gegeneinander verdrehter
Supraleiter bestehen) eingefangenen magnetischen Flusses. Desweiteren Experimente, in
welchen die Zustandsdichte der Quasiteilchenanregungen (oder einer darauf basierenden
Größe) gemessen wird. Photoelektronenemission, Infrarotabsorption und Ramanstreuung
decken die Existenz von Quasiteilchenanregungen für beliebig kleine Anregungsenergien auf.
Daraus folgt das Verschwinden der Lückenfunktion in gewissen Gebieten auf der Fermifläche.
Ergebnisse aus Messungen der spezifischen Wärme deuten ebenfalls in diese Richtung. Sie
zeigen eine lineare Abhängigkeit der (elektronischen) spezifischen Wärme von der Temper-
atur bei niedrigen Temperaturen. Messungen der Eindringtiefe sprechen ebenso für die
Behauptung, daß die Lückenfunktion Knoten besitzt.

Dieses Bild der Phänomene der Hochtemperatursupraleitung ist jedoch weit davon ent-
fernt, umfassend zu sein. Hochtemperatursupraleiter besitzen ein ausgesprochen kom-
pliziertes Phasendiagramm. Sie glänzen mit weiteren Schwierigkeiten, zum Beispiel ihrem
Normalzustand, der nicht innerhalb eines einfachen Fermiflüssigkeitsmodells beschrieben
werden kann.

Experimentelle Ergebnisse der Ramanstreuung an

Hochtemperatursupraleitern

Das typische Experiment zur Ramanstreuung besteht darin, einen monochromen Laserstrahl
auf eine in einem Kryostaten bei der Temperatur kondensierenden Heliums gehaltene Probe
zu fokussieren. Man beobachtet dann natürlich elastisch gestreutes Licht, das jedoch bei der
Ramanstreuung nicht interessiert. Vielmehr wird das inelastisch gestreute Licht ausgew-
ertet. Das gestreute Licht wird mit optischen Mitteln gesammelt und in ein Spektrometer
geleitet. Das so entstehende Spektrum wird dann mittels einer CCD-Kamera detektiert.
Bei den Spektren trägt man die Intensität des inelastisch gestreuten Laserlichtes (die Ra-
manintensität) über der Ramanverschiebung , das ist (beim Stokes-Prozeß) die Energie, die
bei der inelastischen Streuung auf die Probe übertragen wurde, auf. Die Energieskala von
Ramanspektren reicht typischerweise bis knapp in den eV-Bereich, mit einer Auflösung von
einigen wenigen Zehntel meV. Das typische Spektrum von Hochtemperatursupraleitern im
supraleitenden Zustand zeigt ein breites Kontinuum, auf dem einige Peaks sitzen. Die meis-
ten dieser Peaks sind relativ scharf und werden deshalb diskreten Anregungen, welche im
vorliegenden Fall Γ-Punkt-Phononen sind, zugeordnet. Diese Phononen lassen sich vom
Ramanspektrum mittels eines wohldefinierten Verfahrens subtrahieren, und der Rest, das
elektronische Kontinuum, wird üblicherweise als von elektronischen Anregungen verursacht
angesehen. Das elektronische Kontinuum ist eine Konsequenz elektronischer Ramanstreu-
ung .

Beim Experiment benutzt man Laserlicht, das sich in einem definierten Polarisation-
szustand befindet. Außerdem wird das inelastisch gestreute Licht durch einen Polarisa-
tionsfilter geschickt, bevor es dem Spektrometer zugeleitet wird. Durch die Änderung der
Wahl der Polarisationsrichtungen kann man dann mehrere unabhängige Spektren messen.
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Gewisse Eigenschaften des elektronischen Kontinuums sieht man nur in ganz bestimmten
Polarisationskonfigurationen. Dies ist ebenso der Fall für die Phononen. Die Polarisation-
sabhängigkeit der Spektren definiert dann auch den Raman-Tensor. Der Raman-Tensor
ist ein Tensor zweiter Stufe, welcher nach Kontraktion mit den Polarisationsvektoren des
einfallenden und des gestreuten Lichtes und darauffolgendem Quadrieren proportional zur
Ramanintensität wird.

Die Kristallstruktur der untersuchten Hochtemperatursupraleiter besitzt zum großen Teil
eine ”‘schwach“ orthorhombisch (Punktgruppe D2h) gestörte tetragonale (Punktgruppe D4h)
Symmetrie. Dies erlaubt, den Raman-Tensor in eine Summe von Tensoren zu zerlegen, von
denen jeder nach einer bestimmten irreduziblen Darstellung der Punktgruppe transformiert.
Im Falle tetragonaler Symmetrie sind einige solche die total symmetrische A1g-Darstellung
sowie die B1g- und die B2g-Darstellung.

Die Theorie der Ramanstreuung

Die Formulierung der Theorie zur elektronischen Ramanstreuung geht von einem System von
nichtwechselwirkenden Elektronen (genaugenommen handelt es sich um Bloch-Elektronen)
aus, welche an das elektromagnetische Feld gekoppelt werden. Dies liefert zwei Kopplung-
sterme von denen einer, HAp , proportional zum Produkt aus dem Impulsoperator der Elek-
tronen und dem Vektorpotential des elektromagnetischen Feldes ist. Der Zweite, HA2 , ist
proportional zum Quadrat des Vektorpotentiales.

Um die Übergangsrate zur Beschreibung der Ramanstreuung zu ermitteln, müssen
Randbedingungen formuliert werden. Ramanstreuung ist inelastische Lichtstreuung. Im
Experiment wird zeitlich und räumlich kohärentes Laserlicht benutzt. Dieses fällt auf die zu
untersuchende Probe ein und bewirkt dort Anregungen. Sind das elektronische Anregun-
gen, so handelt es sich um Elektron-Loch-Paare mit verschwindendem Kristallimpuls. Die
Anregungen erzeugen wieder Licht, welches als elastisch oder inelastisch gestreutes dann im
Detektor nachgewiesen wird. Zwischen dem einfallenden und dem gestreuten Licht besteht
eine Korrelation, bei Ramanstreuung handelt es sich daher nicht um Lichtabsorption gefolgt
von Lichtemission.

In der Praxis werden wir die Ramanstreuung daher als Wahrscheinlichkeit für einen
Übergang auffassen. Der Anfangszustand |i〉 ist gegeben durch das elektromagnetische Feld,
in dem eine einzige Mode durch n Photonen besetzt ist, und dem elektronischen System der
Probe, welches sich im Grundzustand befindet. Die elektromagnetische Mode nennen wir
L-Mode; sie entspricht dem einfallenden Laserlicht. Alle anderen Moden des elektromag-
netischen Feldes sind unbesetzt. Der Streuprozeß führt dann zu einem Endzustand |f〉, in
welchem die L-Mode nur noch mit n − 1 Photonen besetzt ist und eine weitere Mode, die
S-Mode, ein Photon enthält. Diese Mode entspricht der ebenen Welle, die auf den Detektor
trifft. Das elektronische System ist im Endzustand angeregt. Wir werden annehmen, daß es
sich um eine Elektron-Loch-Anregung handelt.

Der Hamilton-Operator H0 des ungekoppelten Systems von Elektronen und Photonen
alleine induziert natürlich noch keinen Übergang von |i〉 nach |f〉, da es sich um Eigen-
zustände von H0 handelt. Die Kopplungsterme HAp und HA2 jedoch bewirken Ramanstreu-
ung. Die Tatsache, daß sich Anfangs- und Endzustand nur um jeweils ein Photon in der
L-Mode und der S-Mode unterscheiden, bedeutet, daß der Operator HAp nur in gerader
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Ordnung der Störungstheorie zum Raman-Prozeß beiträgt. Wir werden Renormierungsef-
fekte der Elektronen aufgrund von Photonen nicht berücksichtigen, und gelangen so zu dem
Schluß, daß HAp lediglich in zweiter Ordnung der Störungstheorie interessant ist. Eine
ähnliche Überlegung führt dann zu der Feststellung, daß der relevante Beitrag des Opera-
torsHAp zur gesuchten Übergangswahrscheinlichkeit aus der Störungstheorie erster Ordnung
herrührt.

Es ist natürlich umständlich, eine Übergangswahrscheinlichkeit durch zwei verschiedene
Operatoren, die überdies in unterschiedlicher Ordnung der Störungstheorie ihren Beitrag
liefern, zu beschreiben. Aus diesem Grunde faßt man die Operatoren zu einem einzigen
Störoperator, dem Raman-Operator HRaman zusammen. Dieser wird so gewählt, daß er die
relevanten Übergänge in Störungstheorie erster Ordnung beschreibt.

Schreibt man die den L- und S-Moden entsprechenden ebenen Wellen als ein Pro-
dukt aus einem Polarisationsvektor und einer skalaren Welle, so wird klar, daß sich die
Freiheit der Wahl der Polarisation der einfallenden sowie der gestreuten Welle in der
Theorie darin widerspiegelt, daß der Raman-Operator ein Tensor zweiter Stufe ist. Die
Übergangswahrscheinlichkeit, welche vermöge der goldenen Regel quadratisch im Raman-
Operator ist, wird dadurch ein zu einem Tensoren vierter Stufe.

Der Raman-Operator beschreibt die Erzeugung eines Elektron-Loch-Paares zusam-
men mit der Streuung eines Photons. Er ist deswegen proportional zum Produkt eines
Erzeugungs- und eines Vernichtungsoperators für Elektronen zum einen, und für Photo-
nen zum anderen. Bei der Berechnung der Übergangswahrscheinlichkeit separieren die
elektronischen von den photonischen Anteilen, so daß die interessante Größe letztendlich
eine Eigenschaft des elektronischen Systemes ist. Berechnet man die Wahrscheinlichkeit
eines in Störungstheorie erster Ordnung durch einen Dichteoperator verursachten Übergangs
zwischen zwei Zuständen, so sieht man, daß diese durch die Dichte-Dichte-Fluktuationen
gegeben ist. Mittels des Fluktuations-Dissipations-Theoremes kann man diese Größe auf
eine Suszeptibilität zurückführen, welche in diesem Falle mit der longitudinalen dielek-
trischen Funktion in Zusammenhang steht. Ganz ähnlich verhält es sich bei der Ramanstreu-
ung. Die Fluktuationen des Raman-Operators beschreiben die Ramanstreuung. Und das
Fluktuations-Dissipations-Theorem schafft eine Beziehung zwischen diesen und dem Ima-
ginärteil einer Suszeptibilität, der Raman-Suszeptibilität . Wir werden im folgenden sehen,
daß der Raman-Operator unter bestimmten Einschränkungen der inversen effektiven Masse
der Ladungsträger – einem Tensor – entspricht. Aus diesem Grunde spricht man im Falle
der Fluktuationen des Raman-Operators auch oft von den Massenfluktuationen (genauer
den Fluktuationen der inversen effektiven Masse).

Die Tatsache, daß ein Teil des Raman-Operators ein Resultat aus der zweiten Ordnung
der Störungstheorie ist, verleiht dem Raman-Operator einen Resonanznenner. Ist die En-
ergie des einfallenden Lichtes sehr ähnlich derjenigen der Anregung im elektronischen Sys-
tem, wird die Übergangswahrscheinlichkeit verstärkt. Unter bestimmten Umständen aber
kann man die im Resonanznenner auftretende Laserfrequenz gegen die restlichen Terme ver-
nachlässigen. Dadurch nimmt der Ausdruck für den Ramanvertex eine Form an, wie sie
auch der Tensor der inversen effektiven Masse (als Funktion von k) nach Anwendung des
Theorems der effektiven Masse hat. Wir identifizieren also innerhalb obengenannter An-
nahmen den Ramanvertex mit dem Tensor der inversen effektiven Masse. Die Prüfung der
Anwendbarkeit dieser Näherung der effektiven Masse ist nicht trivial und muß von Fall zu
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Fall untersucht werden.
Wir gelangen also zu dem vorläufigen Schluß, daß die Intensität der elektronischen Ra-

manstreuung proportional zum Imaginärteil der Raman-Suszeptibilität ist. Die Raman-
Suszeptibilität ist im einfachen Modell nichtwechselwirkender Elektronen durch die Behand-
lung des Raman-Operators in Störungstheorie erster Ordnung gegeben.

Natürlich ist das oben benutzte theoretische Modell der nichtwechselwirkenden Elek-
tronen der Komplexität des vorliegenden Problemes nicht angemessen. Insbesondere zwei
Effekte, die von der Wechselwirkung zweier Elektronen herrühren, haben wir in Betracht
zu ziehen. Dies ist zum ersten die elektronische Abschirmung . Entsteht durch eine Anre-
gung ein Loch, so entspricht dies einer positiven Ladung, welche durch die Verschiebung
negativer Ladungen abgeschirmt wird. Und zum zweiten den Effekt, der zur Existenz
von Cooper-Paaren im supraleitenden Zustand führt (oder, alternativ, die ungewöhnlichen
Eigenschaften des Normalzustandes nach sich zieht). Beide Effekte sind Vielteilcheneffekte
und entsprechend kompliziert in der mathematischen Handhabung. Wir werden zur weit-
eren Entwicklung der Theorie deshalb den Formalismus der Greenschen Funktionen und
zur Veranschaulichung Feynman-Diagramme heranziehen. Die Raman-Suszeptibilität wird
in diesem Rahmen durch eine Elektron-Loch-Schleife gegeben, deren beide Vertices dem
Ramanvertex entsprechen. Die Renormierung von Suszeptibilitäten durch elektronische Ab-
schirmung geschieht wie üblich im Rahmen der Random Phase Approximation (RPA). In
diesem Zusammenhang wirkt es sich positiv aus, daß im relevanten Grenzfall q → 0 die
Inverse der Coulomb-Wechselwirkung verschwindet. Man kann dann eine sehr kompakte
Formel für die durch elektronische Abschirmung renormierte Raman-Suszeptibilität angeben.

Die Änderungen, die es uns dann erlauben, die Suszeptibilität auch für den Fall der
supraleitenden Phase zu berechnen, beschränken sich auf die Elektron-Loch-Schleife selbst.
In der BCS-Theorie wird gezeigt, daß eine Elektronenflüssigkeit, die sich in der supraleiten-
den Phase befindet, durch eine Flüssigkeit aus Quasiteilchen (den sogenannten Bogolonen)
beschrieben werden kann. Das Energiespektrum der Bogolonen besitzt eine Lücke direkt
über dem Grundzustand. Zur Modifikation der Schleife haben wir die Greensche Funktion
der Elektronen durch die der Quasiteilchen zu ersetzen. Aufgrund der Tatsache, daß der
Ramanvertex nur vom Kristallimpuls, nicht jedoch von der Frequenz abhängt, kann die Fre-
quenzintegration, die bei der Auswertung einer Quasiteilchen-Schleife auftritt, ohne detail-
lierte Kenntnis des Vertex durchgeführt werden. Die Integration führt dann auf die Tsuneto-
Funktion. Diese Funktion hängt von der Frequenz und der Quasiteilchendispersion ab, let-
ztere ist wiederum eine Funktion der Dispersion der Elektronen und der Lückenfunktion.

Problemstellung

An dieser Stelle angekommen, ist die Theorie nun auszuwerten. Die Arbeiten, die schon vor
der unseren vorhanden waren, fallen in zwei Gruppen. Die erste beinhaltet einige Arbeiten
von Devereaux et al . Deren Rechnungen bauen auf einer einfachen zweidimensionalen Mod-
ellbandstruktur mit einem elektronischen Band auf. Die k -Abhängigkeit des Ramanvertex
wird durch die ersten Terme einer Entwicklung in Fermiflächenharmonische dargestellt. Die
zur Berechnung der Suszeptibilitäten notwendige Integration über die Brillouinzone (BZ)
wird durch eine Integration über die Fermifläche (FF) angenähert. Es ist klar, daß bei dieser
Vorgehensweise spezifische Eigenschaften der Bandstruktur der Hochtemperatursupraleiter
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(die ja in den Ramanvertex eingehen) unberücksichtigt bleiben müssen. Ein Problem dieser
Methode ist nicht nur der fehlende Bezug zu einer realistischen Bandstruktur. Ebenso ist
der Fehler, der bei der Näherung der BZ-Integration durch eine FF-Integration entsteht, nur
sehr schlecht abschätzbar.

Ein Ergebnis der Arbeiten von Devereaux et al. betrifft die Lage der Peaks im Ra-
manspektrum, welche der supraleitenden Lücke zugeordnet werden (den sog. Paarbrechungs-
peaks). Messungen zeigten, daß der Peak im A1g-Spektrum bei einer beträchtlich niedrigeren
Ramanverschiebung angesiedelt ist als der Peak im B1g-Spektrum. Das Verhältnis der Posi-
tionen beläuft sich fast auf einen Faktor Zwei. Für tetragonale Systeme sagt die Theorie der
elektronischen Ramanstreuung voraus, daß Effekte der elektronischen Abschirmung nur in
der total symmetrischen A1g-Komponente des Spektrums vorhanden sind. Unter bestimmten
Umständen wird durch den Effekt der Überabschirmung der Peak im A1g-Spektrum hin zu
niedrigeren Werten der Ramanverschiebung verschoben. Mittels einer einfachen Modell-
rechnung konnten Devereaux et al. ein experimentell ermitteltes Spektrum fitten. Später
stellte sich jedoch heraus, daß die dem Fit zugrunde liegende Rechnung mit einem Fehler
behaftet war. Dennoch erscheint die elektronische Abschirmung als eine Möglichkeit, die
unterschiedliche Lage des Peaks im A1g- und im B1g-Spektrum zu erklären.

Ein weiterer Versuch zur Erklärung der Position der Ramanpeaks wurde von Krantz et al.
unternommen. In deren Arbeit wurde der Ramanvertex aus der elektronischen Bandstruk-
tur (über die Näherung der effektiven Masse) und einem Ansatz für die Lückenfunktion
ermittelt. Die elektronische Bandstruktur wurde mittels der Linear-Muffin-Tin-Orbital-
Methode (LMTO-Methode) in der Näherung der atomaren Kugeln (ASA) basierend auf
der Dichtefunktionaltheorie und der Näherung der lokalen Dichte (LDA) berechnet. Die
Rechnungen waren zweidimensional und die Integrationen auf die Fermifläche beschränkt.
Es wurden zum Teil auch bandabhängige Lückenfunktionen benutzt, und für YBa2Cu3O7

(Y-123) gezeigt, daß man durch bestimmte unterschiedliche Lückenfunktionen für das Band
mit gerader und für jenes mit ungerader Symmetrie erreichen kann, daß die Peaks im A1g-
sowie im B1g-Spektrum an verschiedene Positionen fallen. In der Arbeit von Krantz et al.
wurde die elektronische Abschirmung jedoch nicht ganz korrekt berücksichtigt.

Ergebnisse

Ein Teil der vorliegenden Arbeit war also daraufhin ausgerichtet, einige Probleme, die
nach den oben beschriebenen Arbeiten noch geblieben sind, auszuräumen. Dazu wurde
das theoretische Modell so angesetzt, daß die offensichtlichen Einschränkungen der bei-
den Arbeiten umgangen wurden. Wir benutzten also ebenfalls eine mittels der LMTO-
Methode gewonnene elektronische Bandstruktur (die untersuchten Systeme waren Y-123
und YBa2Cu4O8 (Y-124)), beschränkten uns dabei aber nicht auf zwei Dimensionen, son-
dern führten die Rechnung in drei Dimensionen durch. Weiterhin wurde die elektronische
Abschirmung nach der Theorie korrekt berücksichtigt. Als Lückenfunktion wurde die dx2−y2-
Welle ∆k = ∆0 cosϕk gewählt. Die Integrationen wurden außerdem über die gesamte Bril-
louinzone ausgedehnt. Weiterhin haben wir auch Fermiflächenintegrationen durchgeführt,
um die Anwendbarkeit dieser Näherung durch Vergleich der Ergebnisse mit denjenigen aus
der BZ-Integration zu überprüfen. Dabei ist eine Bemerkung angebracht: Die mittels der
LMTO-Methode berechnete elektronische Bandstruktur von Y-123 weist eine van Hove-
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Singularität etwa 25meV unterhalb der Fermienergie auf. Diese befindet sich am Rande der
Brillouinzone, fern von der Fermifläche. Dadurch ist zu erwarten, daß die Singularität keinen
Einfluß auf die aus der FF-Integration erlangte Ramanintensität hat. Die mit der van Hove-
Singularität verbundene hohe Zustandsdichte etwa 25meV unterhalb der Fermienergie sollte
sich jedoch in der durch eine BZ-Integration berechneten Ramanintensität widerspiegeln.
Das tut sie in der Tat.

In der Arbeit wurde Wert darauf gelegt, nicht nur die Form der elektronischen Ra-
manspektren, sondern auch die absoluten Werte der Ramanintensität zu reproduzieren.
Solch ein Unterfangen wurde für Hochtemperatursupraleiter nie zuvor durchgeführt. Man
muß dazu zum einen große Sorgfalt bei der Messung walten lassen, außerdem ist eine
geeignete Eichung der Meßapparatur unumgänglich. Desweiteren ist auch allen Vorfak-
toren bei der Berechnung der Ramanintensität korrekt Rechnung zu tragen. Als Ergeb-
nis erhielten wir bis auf einen Faktor Zwei eine zufriedenstellende Übereinstimmung der
theoretisch bestimmten mit den experimentell ermittelten Ramanintensitäten. Dies ist
ein wichtiger Hinweis darauf, daß die elektronische Ramanstreuung an Hochtemperatur-
supraleitern tatsächlich von Massenfluktuationen verursacht wird (das bedeutet auch, daß
für eine konstante Masse keine Streuung stattfindet).

Ein weiteres überraschendes Ergebnis der Rechnungen betrifft die Position des von der
Paarbrechnung herrührenden Peaks im A1g- sowie im B1g-Spektrum. Er befindet sich fast
genau an derselben Position. Dies steht im krassen Widerspruch zu den experimentell er-
mittelten Daten und ebenso zu Ergebnissen aus den Arbeiten von Devereaux et al . Der
Befund hat zur Aufdeckung des Fehlers in einer Modellrechnung letzterer Autoren geführt.
In unserer Arbeit haben wir die Möglichkeit erwähnt, daß nur der Peak im elektronischen
A1g-Spektrum von der Paarbrechung herrührt, und der Peak im B1g-Spektrum eventuell
einen magnetischen Ursprung hat.

Das Niederenergiespektrum

Ein Thema, das auch schon von Devereaux et al. aufgegriffen wurde, ist das Verhalten
der Ramanintensität bei niedrigen Energien (oder Ramanverschiebungen). Als niedrige En-
ergien sehen wir dabei solche an, die kleiner als etwa die Amplitude ∆0 der supraleitenden
Energielücke sind. Wir betrachten zunächst streng tetragonale Systeme, welche eine En-
ergielücke von der Form einer dx2−y2-Welle haben. Man kann nun zeigen, daß im Falle des
A1g-Spektrums (und allen anderen Spektren außer dem B1g-Spektrum) die Ramanintensität
für T = 0 linear in der Ramanverschiebung ist. Das B1g-Spektrum hat eine andere Eigen-
schaft. Die Energielücke besitzt B1g-Symmetrie. Sie hat Knoten entlang der Diagonalen
Γ-M der Brillouinzone. Dies ist ebenso der Fall bei der B1g-Komponente des Ramanvertex.
Dadurch entstehen zwei weitere Potenzen der Ramanverschiebung, so daß die Ramaninten-
sität dann proportional zur dritten Potenz der Energie ist. Dies kann man experimentell in
Bi2Sr2CaCu2O8 (Bi-2212) beobachten, nicht jedoch in Y-123. Für dieses Verhalten konnten
wir eine Erklärung, die auf der Orthorhombizität der Hochtemperatursupraleiter basiert,
geben. Beide Materialien, Bi-2212 und Y-123 besitzen eine leicht orthorhombisch verzer-
rte tetragonale Kristallstruktur. Solch eine orthorhombische Verzerrung kann nun auf zwei
Arten geschehen. Die erste ist in Bi-2212 realisiert und erhält die Spiegelebenen welche
die Lage der Knoten sowohl in der Lückenfunktion als auch in der B1g-Komponente des
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Ramanvertex definiert. Dadurch hat man in Bi-2122, ebenso wie in perfekt tetragonalen
Systemen, ein kubisches Verhalten des B1g-Spektrums bei niedrigen Energien. Die zweite
Art wird durch Y-123 repräsentiert. Hier zerstört die orthorhombische Verzerrung besagte
Spiegelebenen, und die Knoten der Lückenfunktion und diejenigen der B1g-Komponente
des Ramanvertex fallen nicht mehr zusammen. Dadurch erhält das Niederenergiespek-
trum einen starken linearen Anteil zusätzlich zum kubischen Anteil. In einer separaten
Arbeit haben wir ein Verfahren angegeben, wie man die relative Verschiebung der Knoten
in der Lückenfunktion und in der B1g-Komponente des Ramanvertex bestimmen kann. Setzt
man voraus, daß in einem orthorhombisch gestörten System die Lückenfunktion die Form
d + αs einer Überlagerung einer d-Welle mit einer s-Welle annimmt, kommt die Bestim-
mung der relativen Verschiebung der Knoten einer Ermittlung des Parameters α gleich.
Zur Durchführung des Verfahrens benötigt man das experimentell ermittelte Verhältnis der
Stärke des linearen Anteils zum kubischen Anteil im Niederenergiespektrum. Weiterhin muß
die elektronische Bandstruktur (etwa aus einer LMTO-Rechnung) bekannt sein. Wir merken
in diesem Zusammenhang an, daß die Physik des Niederenergiespektrums sehr delikat ist.
Dies liegt auf der Seite des Experiments daran, daß man energetisch schon sehr nahe am
elastisch gestreuten Laserlicht ist und somit eine Trennung des um typischerweise sechs bis
acht Größenordnungen intensiveren Laserlichts vom inelastisch gestreuten Licht schwierig ist.
Auf der theoretischen Seite wird die klare Aussage der Linearität beziehungsweise Kubizität
des Niederenergiespektrums durch die fehlende Betrachtung des Effektes von Verunreinigun-
gen relativiert. Diese können – ebenso wie die orthorhombische Verzerrung – einen linearen
Anteil zum kubischen Anteil des B1g-Spektrums liefern.

Vertexrenormierung

Ein weiterer Versuch, die Lage der Paarbrechungspeaks in den elektronischen Ramanspek-
tren zu erklären, wurde von Manske et al. unternommen. In ihrer Arbeit zeigten sie, daß
eine in der Standardtheorie der elektronischen Ramanstreuung (scheinbar) vernachlässigte
Korrektur des Ramanvertex (durch eine Anziehung zwischen den Quasiteilchen) relevant
für die Vorhersage der Lage des Paarbrechungspeaks im B1g-Spektrum ist. Die Autoren
präsentierten außer einer ”‘erweiterten“ Theorie auch noch eine Modellrechnung, welche ein
experimentell ermitteltes Ramanspektrum sehr gut fitten konnte. In der Modellrechnung
wurde jedoch die A1g-Komponente des Ramanvertex mit der ”‘A1g +B2g“-Komponente ver-
wechselt. Dies führt zu einem A1g-Spektrum, das um mehr als eine Größenordnung von dem
durch ihre ”‘erweiterte“ Theorie vorausgesagten abweicht. Dadurch ist die Modellrechnung
natürlich wertlos. Die Vertexrenormierung in der Theorie wurde jedoch auch schon von
Devereaux et al. viel früher behandelt. In dieser Arbeit wurde gezeigt, daß besagte Ver-
texrenormierung zu einigen zusätzlichen Exciton-ähnlichen Polen etwas unterhalb von 2∆0

in der Tsuneto-Funktion führen. Diese Pole haben jedoch sehr geringes Spektralgewicht
und sind dadurch für die Belange der Ramanstreuung irrelevant. Diese Punkte haben wir
in einem Kommentar in der Physical Review B aufgezeigt.
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Ramanstreuung an Phononen

Der zweite Schwerpunkt der vorliegenden Arbeit betrifft die Ramanstreuung an Phononen.
Phononen koppeln indirekt über eine Elektron-Loch-Anregung an das Laserlicht. Einfallen-
des Licht erzeugt ein Elektron-Loch-Paar. Dann streut das Elektron (oder das Loch) und
erzeugt dabei ein Phonon. Das gestreute Elektron rekombiniert dann mit dem Loch und das
gestreute Photon wird erzeugt. Es ist klar, daß an diesem Prozeß nur Γ-Punkt-Phononen
beteiligt sein können. Insofern können die beteiligten Phononen also als diskrete Anregun-
gen aufgefaßt werden. Die Elektron-Phonon-Kopplung zieht die Möglichkeit der Wechsel-
wirkung von elektronischen Anregungen mit dem Phonon nach sich. Dies ist unabdingbar
dafür, daß Ramanstreuung an Phononen überhaupt möglich ist. Es bewirkt aber auch die
Interferenz der diskreten phononischen Anregung mit dem kontinuierlichen Elektron-Loch-
Anregungsspektrum. Solch eine Interferenz wurde schon von Fano und von Anderson (in
jeweils unterschiedlichem Kontext) untersucht; wir werden die durch Übertragung derer
Methoden auf die Ramanstreuung an Phononen gewonnene Formel für die Ramaninten-
sität Fano-Formel nennen. Eine wichtige Folgerung der Elektron-Phonon-Interferenz ist die
Renormierung der Frequenz sowie der Lebensdauer der Phononen durch die Kopplung an das
Elektron-Loch-Kontinuum. Beim Übergang vom normalleitenden zum supraleitenden Zus-
tand eines Hochtemperatursupraleiters ändert sich das Elektron-Loch-Anregungsspektrum
im Energiebereich unterhalb von etwa 3∆0 drastisch. Diese Änderung zieht dann eine solche
der Renormierung der Phononen nach sich. In den Ramanspektren wirkt sich das dadurch
aus, daß sich die Phononpeaks zum einen verschieben, und daß sie zum anderen ihre Breite
ändern.

Das experimentell untersuchte Material war HgBa2Ca3Cu4O10+δ (Hg-1234). Wir ent-
deckten an zwei Phononen sehr starke Änderungen der Renormierung (stärker als alle zuvor
an Hochtemperatursupraleitern gemessenen). Dieser überraschende Befund rief natürlich
nach einer theoretischen Modellierung. Ein theoretisches Modell muß auf den berech-
neten Suszeptibilitäten der Elektron-Loch-Anregungen zum einem für den normalleitenden
und zum anderen für den supraleitenden Zustand basieren. Dies wird dadurch verkom-
pliziert, daß man sehr wenig über den normalleitenden Zustand weiß. Um dieses Prob-
lem zu umgehen, haben wir angenommen, daß der Einfluß der Elektron-Loch-Anregungen
im Normalzustand des Supraleiters auf die betrachteten Phononen klein ist. Die auf
dieser Annahme aufbauende Analyse der experimentell ermittelten Ramanspektren führt
dann zu einer Abschätzung der Stärke der Elektron-Phonon-Kopplung. Diese Kopplung
kann durch die Spektralfunktion α2F (ω) aus Eliashbergs Theorie charakterisiert werden.
Aus diesem Grunde haben wir den Wert von McMillans daraus abgeleitetem Elektron-
Phonon-Wechselwirkungsparameter λ, welcher nicht nur die Stärke der Elektron-Phonon-
Wechselwirkung sondern im Rahmen von Eliashbergs Theorie auch die kritische Temper-
atur Tc bestimmt, ermittelt. Zusammen mit Parametern, die aus den experimentell er-
mittelten Spektren entnommen wurden, führte unsere Theorie auf eine Abschätzung von
λ ≈ 0.08 für den jeweiligen Beitrag der beiden betrachteten Phononen. Wenn alle Phononen
die gleiche Kopplungsstärke aufwiesen (was nicht der Fall ist), würde das bedeuten, daß der
gesamte λ-Parameter den Wert 2 erreicht.
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Chapter 1

Introduction

1.1 History

In the history of physics, the advent of new technological achievements frequently has trig-
gered the discovery of new physical phenomena. When Kammerlingh Onnes discovered in
1911 at the University of Leiden the superconducting state in solid mercury [1.1], this became
possible because three years earlier he had succeeded in liquifying helium. Liquid helium
was the key for accessing temperatures as low as a few Kelvin, necessary to reach the phase
transition to the superconducting state at the critical temperature Tc.

For the theorists, the quest for a theory of the new state arose. The superconducting state
is characterized mainly by two basic elementary properties, namely the Meissner-Ochsenfeld
effect [1.2] (the exclusion of magnetic flux from the interior of a bulk superconductor), and
the complete vanishing of the dc electrical resistance. A first step forward was undertaken
when in 1935 F. and H. London explained the two basic electrodynamic properties of the
superconducting state with the two London equations [1.3] in the framework of classical
macroscopic electrodynamics.

Two other important properties of the superconducting state furthermore led closer to
a theoretical explanation. Daunt and Mendelssohn [1.4] discovered the absence of ther-
moelectric power in the superconducting state, and Corak et al. [1.5] showed that for low
temperatures well below Tc, the electronic specific heat obeys an exponential dependence on
the temperature. These two effects suggested the presence of an energy gap ∆ between the
ground state of the system and its quasiparticle excitations. Another landmark was the sug-
gestion by Fröhlich [1.6] in 1950 that the electron-lattice interaction is of crucial importance
for the explanation of superconductivity. This proposal was confirmed soon thereafter by the
discovery of the isotope effect [1.7], that is, the proportionality of the critical temperature Tc

to M−1/2, the inverse square root of the mass of the element in elemental superconductors.

The final breakthrough, however, was the pairing theory of superconductivity, formulated
by Bardeen, Cooper, and Schrieffer in 1956 (BCS-theory, see App. E) [1.8]. They showed
that the Fermi sea ground state of an electron gas is unstable with respect to a weak
attractive interaction between the electrons. Such an attraction causes the formation of
Cooper pairs [1.9], which are pairs of electrons with opposite quasimomentum and spin. The
spatial extension of these pairs is described by Pippard’s coherence length ξ0. The theory
indeed showed the presence of an energy gap 2∆ = 3.528Tc in the excitation spectrum for the

1
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2 CHAPTER 1. INTRODUCTION

superconducting state, and explained most of the physical properties of the superconducting
state.

The BCS-theory is a weak-coupling theory: the attractive electron-electron interaction
must be small, otherwise the BCS-theory is not applicable. While the superconducting state
of Al, In, and Sn can be described rather well within the BCS-theory, Pb and Hg deviate
considerably, with 2∆ = 4.3Tc and 2∆ = 4.6Tc, respectively, from the predicted BCS behav-
ior. This deviation is mainly due to the crude description of the phonon-mediated attractive
electron-electron interaction in the BCS-theory. The attractive interaction is realized by
the exchange of virtual phonons and is based on Fröhlich’s electron-lattice interaction. This
is taken into account in the Eliashberg-theory [1.10] where the interaction is described by
means of the function α2F (ω), that is, the phonon density of states weighted by the electron-
phonon coupling strength. Its predictions concerning the ratio 2∆/Tc in Pb and Hg agree
well with the experiment.

The peaceful time of agreement between theory and experiment was disturbed again
by the discovery of the heavy-fermion superconductors [1.11] which cannot be described by
the Eliashberg theory. Examples for these systems are CeCu2Si2 and UPt3, heavy-fermion
superconductors always contain ions with f -electrons. The specific heat of these compounds
is by orders of magnitude larger than in typical metals. This points to the existence of
carriers with a mass much larger than the free electron mass, the heavy fermions. The
low-temperature specific heat in these compounds appears to show a power-law dependence.
Such a property could arise from a gap function which vanishes at some points (or lines)
on the Fermi surface. Heavy-fermion superconductors, however, possess very low critical
temperatures. This renders them experimentally difficult and may be the reason for their
falling into oblivion.

This was the situation when in 1986 at the IBM research laboratory in Zürich, Bednorz
and Müller succeeded in the epoch-making discovery of high-temperature superconductiv-
ity [1.12] in ceramic La2−xBaxCuO4 with a critical temperature of about 35 K. Soon after this
remarkable event, high-temperature superconductivity was also found in YBa2Cu3O7 [1.13]
with Tc ≈ 92 K, thus breaking the liquid-N2 barrier, and in many similar layered materials
based on copper-oxide planes.

The fact that the critical temperature of many of the high-temperature superconductors
is higher than the liquification temperature of nitrogen opens the way for a technical ap-
plication of superconductivity, because liquid nitrogen is cheap and easy to handle. Clear
disadvantages for a technical application, however, are the low density of charge carriers
(compared to metals), the marked anisotropy of the electronic properties (due to the lay-
ered structure), and the short coherence length ξ0 which implies a low critical field Hc1.

For the high-temperature superconductors, there is no doubt that the superconductiv-
ity is based on Cooper pairs with zero total quasimomentum (the measured flux quantum
is hc/2e) which are in the spin singlet state (may be deduced from Knight shift measure-
ments), like in the BCS-theory.

Two other types of observations, however, cannot be explained by an isotropic theory like
the BCS-theory: (1) the experiments which directly exploit the spatial symmetry of the gap
function. A prominent example is the measurement of the trapped magnetic flux in a SQUID
ring [1.14] which consists of two mutually rotated high-temperature superconductors. (2)
experiments in which the density of states of quasiparticle excitations (or a quantity based
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1.2. RAMAN SCATTERING IN HIGH-TEMPERATURE SUPERCONDUCTORS 3

on this) is probed. Photoelectron emission [1.15], infrared absorption [1.16], and Raman
scattering [1.17] experiments show the existence of quasiparticle states for arbitrarily small
excitations energies. This implies the vanishing of the gap function [1.18, 1.19] in certain
regions on the Fermi surface. Results from specific heat measurements [1.20] also point
in this direction. They show a linear dependence of the (electronic) specific heat on the
temperature (for small temperatures). The penetration depth measurements [1.21] also
support the conjecture that the gap function has nodes.

This picture of the phenomenon of high-temperature superconductivity, however, is
far from being exhaustive. High-temperature superconductors possess a very difficult
phase diagram [1.22], and provide further difficulties concerning, for instance, the normal
state [1.23, 1.24], which cannot be described by a simple Fermi-liquid model.

1.2 Raman scattering in high-temperature supercon-

ductors

Raman scattering has played an important role in the investigation of the properties of
high-temperature superconductors [1.25]. The dependence of the Raman efficiency on the
directions of the polarization of the incident and scattered light yields several independent
spectra which provide a considerable number of constraints on the assumed k-dependence
of the gap function ∆k . Raman scattering, however, is sensitive to the magnitude but not
to the phase of the gap function.

The Raman spectra at temperatures below Tc show, in most high-temperature supercon-
ductors, a clear gap-like structure which lies in the energy range of the optical phonons at
the Γ-point. These phonons have been identified for most high-temperature superconduc-
tors [1.25], and the subtraction of the corresponding structures from the spectra has become
a standard procedure to isolate electronic structures containing gap information. Electronic
Raman scattering spectra are now available for many high-Tc materials and, since they ex-
hibit similar general features, most of these data are considered to be reliable. In this thesis
(particularly in Chap. 2), we attempt to interpret these spectra from a theoretical point
of view based on the full 3D one-electron band structure. We pay attention to both, line
shapes and absolute scattering efficiencies.

1.3 A theoretical model for the Raman scattering by

electronic excitations

The theory of electronic Raman scattering in superconductors was pioneered by Abrikosov
and coworkers in two important papers [1.26, 1.27]. In the first, they developed a theory for
the scattering efficiency of isotropic Fermi liquids under the assumption that the attractive
interaction between quasiparticles can be neglected. In the second paper, they extended this
approach to anisotropic systems, introduced the inverse effective mass vertex concept, and
included Coulomb screening. The current form of the theory, developed mainly by Klein and
Dierker [1.28], takes into account the attractive pairing interaction and emphasizes the role
of gauge invariance as well as the polarization dependence for anisotropic gaps. In order to
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compare the theoretical predictions with the experiment, we evaluate the former numerically
in a quantitative manner (including absolute scattering efficiencies) and compare them to
the experimental findings.

Several calculations of the electronic Raman scattering efficiency of high-temperature
superconductors have already been published. Some of them use highly simplified 2D band
structures and a decomposition of the Raman vertex γk in Fermi surface (FS) harmon-
ics [1.29] or Brillouin zone (BZ) harmonics, as well as FS integrations instead of the required
BZ integrations [1.30, 1.31, 1.32]. The results of these calculations depend very strongly on
the number of expansion coefficients used for γk and their relative values. Another ap-
proach [1.33] involves the use of band structures calculated in the framework of the local
density approximation [1.34] (LDA) using the LMTO method [1.35, 1.36] (see App. B).
Within the approximations of the LDA, this Raman vertex is exact, that is, the only errors
made in such a calculation arise from limitations of the LDA method itself and from the
discretization of the Brillouin zone or the Fermi surface. Some of these calculations, how-
ever, suffer from the fact that only the imaginary part of the Tsuneto function [1.37] has
been used, and that only 2D integrations were performed [1.38].

1.4 Raman scattering by electronic excitations

The present approach to the Raman scattering by electronic excitations is based on the full
3D LDA-LMTO band structure. It uses a BZ integration (for comparison, a Fermi surface
integration is also performed), screening effects are included, and both the real and imaginary
part of the Tsuneto function are taken into account as required by the theory (see Sect. 2.3).
Electronic Raman spectra are calculated for YBa2Cu3O7 (Y-123) and YBa2Cu4O8 (Y-124)
and presented in Sect. 2.7. The orthorhombicity of the cuprates is also taken into account
in the Raman vertex since we use as starting point the band structure of the orthorhombic
materials.

The cuprates under consideration are not only of interest because of their supercon-
ducting, but also of their strange normal-conducting properties. Usual metals should show
peaks in their Raman spectra at their plasma frequencies corresponding to Raman shifts of
a few eV. The optimally doped cuprates, in contrast, show a very broad electronic back-
ground (from 0 to about 1 eV Raman shift), which is almost independent of temperature
and frequency. The spectra of the underdoped high-temperature superconductors, such as
Y-124, show some temperature dependence at low frequencies (~ω � kT ). It is possible
to explain these peculiarities, together with other properties, by assuming a certain form of
the quasiparticle lifetime, as was done in the Marginal Fermi Liquid theory [1.23, 1.24]. We
discuss this topic in Sect. 2.4.

For the superconducting state, various forms for the gap function have been proposed.
That which has received most experimental support has dx2−y2-symmetry, that is, B1g sym-
metry (see App. C) in tetragonal high-temperature superconductors. The power of Raman
scattering to confirm such gap function has been questioned, because, among other diffi-
culties, it only probes the absolute value of the gap function, that is, it cannot distinguish
between a dx2−y2-like gap function (e.g., cos 2ϕ), and a |cos 2ϕ| gap function, which corre-
sponds to anisotropic s- (A1g-) symmetry. However, it was pointed out that addition of
impurities can be used to effect the distinction [1.39] (see Subsect. 2.3.7).
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1.5 Raman scattering by phonons

Raman scattering of light by optical phonons in solids essentially proceeds via electron-
phonon interactions. Those phonons, which are strongly coupled to electrons occupying
states near the Fermi surface (FS), can be very sensitive to changes in the vicinity of the FS.
In superconductors, the opening of the superconducting gap results in a redistribution of
electronic states and excitations in the immediate vicinity of the FS which in turn changes
the phonon self-energy, that is, the contribution of the electron-phonon interaction to the
phonon frequency and its linewidth. Superconductivity-induced phonon self-energy effects
have been observed for a number of cuprates [1.40, 1.41, 1.42, 1.43, 1.44, 1.45] and theo-
retically studied for the case of s-wave [1.46] and d-wave [1.47, 1.48] superconductors. In
particular, sizeable effects have been observed for the B1g out-of-phase plane oxygen phonon
in YBa2Cu3O7−δ (Y-123) [1.40, 1.42, 1.43] and for the A1g phonons in HgBa2Ca2Cu3O8+δ

(Hg-1223) [1.45]. In addition, the appearance of a superconducting gap in the low-energy
electronic excitations may also lead to resonance-like phenomena, for instance, increases in
the Raman intensity of some phonons below the transition temperature Tc. Such increases
have been seen in Y-123 [1.49], YBa2Cu4O8 (Y-124) [1.50], and Hg-1223 [1.45]. Experimen-
tally measured superconductivity-induced changes in phonon frequencies and linewidths, in
conjunction with model calculations [1.46], have been used to estimate the magnitude of
the superconducting gap in R-123 (R is a rare earth element) [1.42]. Information on the
superconducting order parameter can also be inferred from the electronic peak that develops
below Tc due to quasiparticle creation through pair-breaking [1.32, 1.51], provided the peak
is discernible. Similarities of model calculations of the phonon self-energy and the electronic
Raman efficiency [1.52], with specific reference to d-wave paired superconductors, have been
pointed out in [1.53]: at low frequencies, the imaginary part of the phonon self-energy of
tetragonal superconductors varies with frequency as ω3 for the B1g and as ω for A1g spectra.
Note, however, that in the orthorhombically distorted R-123 the tetragonal B1g and A1g

symmetries are mixed [1.54].
In Sect. 3.5, we report a collosal superconductivity-induced phonon self-energy effect

which we have discovered in microcrystalline HgBa2Ca3Cu4O10+δ (Hg-1234) superconduc-
tors. We have observed a remarkable frequency softening and a linewidth increase of vibra-
tions along the c-axis involving the plane oxygen atoms with some admixture of calcium in
a narrow temperature interval immediately below Tc, accompanied by a strikingly strong
phonon intensity enhancement throughout the superconducting state. While rather elabo-
rate theories exist for the self-energy effects of phonon frequencies and linewidths [1.46, 1.47],
the corresponding effect on Raman intensities does not seem to have been theoretically
treated. Moreover, the existing theories for the self-energy of phonons have so far not allowed
the extraction of quantitative data concerning parameters relevant to the superconductivity
from the available experimental results. We thus propose a simple quantum mechanical
scheme which allows us to relate the enhancement of the Raman intensities observed in
the superconducting state to the real part of the corresponding self-energy and to obtain
semiquantitative information on the corresponding electron-phonon coupling constant.
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Chapter 2

Electronic Raman scattering

2.1 Introduction

This chapter deals with electronic Raman scattering in superconducting cuprates and points
out a way to explain the electronic Raman efficiency theoretically.

Section 2.2 introduces the theory of electronic Raman scattering and discusses the dif-
ferent aspects of the theory thoroughly and in a form which is applicable to metals in both
the normal as well as the superconducting state. In the subsequent section, the theory is
specialized to the superconducting state and the important Tsuneto-function is introduced.
In addition to that, the effect of different nonidealities which are present in the experiment,
as for instance impurities and a deviation of the crystal structure from the tetragonal sym-
metry, is discussed. Section 2.4 then briefly introduces a possible description of electronic
Raman scattering in the normal state of the cuprate superconductors based on the Marginal
Fermi Liquid (MFL) theory. Building on this preparatory discussion, we can then express
the electronic Raman efficiency as a combination of some averages of certain k -dependent
functions over the Brillouin zone. The Sect. 2.5 introduces a method for a numerical evalua-
tion of these averages and, therefore, shows how to determine the electronic Raman efficiency
by numerical means. In Sect. 2.6 experimental results for the electronic Raman efficiency
in the two compounds YBa2Cu3O7 (Y-123) and YBa2Cu4O8 (Y-124) are discussed. The
purpose of Sect. 2.7 is to present the results of the numerical calculations and to compare
them to the experimental findings.

The calculations in Sect. 2.7 are based on the “realistic” LDA-LMTO band structure,
and use a dx2−y2-like, band-independent gap function. In Sect. 2.8, we focus on some other
interesting forms of the gap-function and use a model band-structure for the calculations.
In nontetragonal superconductors, one may expect the presence of a dx2−y2-like gap with a
slight s-wave contribution. Section 2.9 introduces a method to determine the ratio of these
two contributions to the gap-function. Finally, in Sect. 2.10 we discuss some extensions to
the standard theory of electronic Raman scattering.

7
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2.2 The theory of electronic Raman scattering

2.2.1 Photons and the electromagnetic field

Raman scattering refers to the inelastic scattering of light . In the typical experimental setup,
a laser beam impinges on the sample (see Fig. 2.1). The coherence length of the laser beam
in beam direction (∼ 1 m) is much larger than the size of the sample. As far as the sample
is concerned, the vector potential of the laser beam therefore can be described by the plane
wave

A′
L(r , t) = A′

Le
′
L exp i(k ′

Lr − ωLt)

with the amplitude A′
L, wavevector k ′

L, polarization e ′
L, and frequency ωL ≡ ck′L.1 The

lateral size of the laser beam (typically ∼ 1.5 mm), however, is often smaller than that of
the sample. For the purpose of the theoretical treatment we therefore consider just a small
sample, which is uniformly illuminated by the laser, and treat larger samples by using the
illuminated area as the area ASa of the sample and the illuminated volume instead of the
sample volume VSa.

The plane wave then penetrates into the sample and creates inside an electromagnetic
(elmag) field. This field can be calculated by means of Maxwell’s equations and the (com-
plex) dielectric constant ε of the sample, given by the transversal dielectric function ε(q , ω)
for ω = ωL and q → 0. The vector potential field inside of the sample is still a plane
wave which, however, does not only experience refraction when crossing the surface, but
also absorption inside the sample. The length scale in which it becomes damped is given by
the penetration depth, which is equal to the inverse absorption coefficient. On scales much
smaller than the penetration depth, the vector potential field inside of the sample can be
described by an undamped plane wave. We denote its amplitude, wavevector, and polar-
ization by AL, kL, and eL, respectively. It is clear that for the case when the longitudinal
size LSa of the sample is comparable to the penetration depth or even smaller, more than
one single mode of the elmag field will be occupied with photons. The coherence length will
be given by the penetration depth. In the upcoming theoretical treatment, we assume that
the longitudinal size of the sample is much less than the penetration depth and neglect the
damping effects. This, however, is problematic in typical high-Tc superconductors, where
the penetration depth is of the order of 100 nm or even less.

For normal incidence of the laser beam (which is the usual case in Raman scattering), and
when neglecting multiple reflections at the sample surfaces, the amplitudes of the plane wave
outside and inside the sample are related by Fresnel’s equation, yielding AL = A′

L ·2/(ñ+1),
where the refractive index ñ is related to the dielectric constant by the Maxwell relation
ñ =

√
ε, Re ñ > 0.

If we describe the vector potential AL inside the sample as a quantized field and use the
sample volume VSa as quantization volume for the elmag field, then the laser light occupies
the mode (kL,eL) (which we call the L-mode and its quanta the L-photons) of the elmag
field in the sample with a macroscopic2 number nL of photons.

1We denote the length of vectors v by italic letters v, i.e. v = |v | throughout this chapter.
2This property makes it easy to relate the classical field amplitude A′

L to the quantum mechanical
occupation number nL of the mode.
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2.2. THEORY OF ELECTRONIC RAMAN SCATTERING 9

The interaction of the L-photons with the sample opens up a decay channel for the
L-photons. We consider another mode, the S-mode (kS,eS) of the elmag field, carrying
S-photons, and denote the decay rate of L-photons into the empty S-mode by ΓL→S. The
vector potential field AS related to the S-mode (which is also assumed to be a plane wave)
then leaves the sample and creates the field A′

S with wavevector k ′
S outside. The relation

of A′
S and AS is described by classical electrodynamics. Again for normal incidence, the

Fresnel equations read A′
S/AS = 2ñ/(ñ+ 1), and the ratio of the intensities of the incoming

light wave (with wavevector k ′
L) and the scattered light wave (with wavevector k ′

S) is related
to the corresponding intensity ratio inside the sample by

(A′
S/A

′
L)2 =

∣
∣
∣
∣

4ñ

(ñ+ 1)2

∣
∣
∣
∣

2

(AS/AL)2 . (2.1)

2.2.2 The scattering efficiency

The intensity of the scattered wave is measured in the detector. For the description of the
measured intensity, one defines the differential Raman efficiency d2η/(dΩ d~ω) by making
use of two energy currents (we use this term synonymous to “energy flux”). The first, denoted
by d2IE,S, is the energy current of scattered photons with a wavevector lying in a cone dΩ
around k ′

S in k-space and having an energy lying in the interval [~ω ′
S ≡ ~ck′S, ~ω

′
S + d~ω].

Taking this quantity per unit angle and unit energy defines d2IE,S/(dΩ d~ω). The second
is the energy current IE,L of photons which hit the sample. Then the differential Raman
efficiency d2η/(dΩ d~ω) is the quotient of these two energy currents. It has the dimension
1/Energy and is proportional to the thickness LSa of the sample (or the penetration depth of
light in the sample if it is thicker than the inverse absorption coefficient c/(ω|Im ñ|)). This
proportionality is removed by the definition of the quantity

d2S

dΩ d~ω
=

1

LSa

d2η

dΩ d~ω
=

1

LSa

1

IE,L

d2IE,S

dΩ d~ω
(2.2)

which is called the differential Raman efficiency and has the dimensions 1/(Energy ·Length).
In the experiments, the energy is usually measured in wave numbers (cm−1), and therefore
the differential Raman efficiency has the somehow strange dimensions (cm−1 cm sr)−1.

When talking about the Raman efficiency, the Raman efficiency S, or the differential
Raman efficiency, we shall always refer to the differential quantity defined in (2.2); if we
refer to the differential Raman efficiency d2η/(dΩ d~ω) it will be explicitly stated.

For the determination of the Raman efficiency we proceed as follows. The energy cur-
rents IE,L and d2IE,S are related to the vector potentials A′

L and A′
S, respectively. In the

case of the incoming photons, the energy current is given by (we use cgi units throughout
this chapter)

IE,L = ASa
c

8π

ω2
L

c2
A′

L
2

=

∣
∣
∣
∣

4ñ

(ñ+ 1)2

∣
∣
∣
∣

2

ASa
c

8π

ω2
L

c2
A2

L ,

and is proportional to the surface area ASa of the sample (if we keep the vector poten-
tial A′

L or—equivalently—the incoming energy current density fixed) and has the dimension
Energy/Time. The determination of the scattered energy current d2IE,S with wavevectors
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10 CHAPTER 2. ELECTRONIC RAMAN SCATTERING

AL

A

Sample

SkS

kL

AS’

kL’

AL
’

kS’

Detector

Laser

Figure 2.1: The definition of some quantities used in the discussion of Raman scattering.

in the cone34 dΩ d~ω is a bit more difficult. If we consider just one mode, the S-mode, it
is clear that the energy current is given by IE,S = ~ωSΓL→S under the assumption that the
time 1/ΓL→S is much larger than the one the scattered photons need to leave the sample.
Otherwise, the assumption of an empty S-mode made in the definition of the decay rate ΓL→S

is not appropriate. Under the assumption that all other modes in the cone dΩ d~ω carry the
same energy current as the S-mode, and that there are no interferences between the modes,
the energy current d2IE,S is simply given by the number of modes in the cone times the en-
ergy current per mode. The number of photon states in the sample for a given polarization
and per k-space volume d3k is VSa/(2π)3, and the energy current of the scattered photons is

d2IE,S

dΩ d~ω
=

VSa

(2πc)3
ω3

SΓL→S .

This quantity has the dimension 1/Time (like the decay rate ΓL→S) and is proportional to the
sample volume VSa or more exactly the illuminated volume (the decay rate is independent
of the sample volume). This proportionality simply arises from the observation that the
number of states in the cone dΩ d~ω is proportional to the sample volume.

At this point it already becomes clear that the quotient of energy currents leading to
the differential Raman efficiency d2η/(dΩ d~ω) is proportional to the sample thickness LSa

(assuming that it is smaller than the penetration depth of light), just because the incoming
energy current is proportional to the sample surface, and the energy current of the photons
scattered into the cone dΩ d~ω is proportional to the sample volume. This proportionality
is not present in the Raman efficiency S, which becomes

d2S

dΩ d~ω
=

1

LSa

1

IE,L

d2IE,S

dΩ d~ω
=

∣
∣
∣
∣

4ñ

(1 + ñ)2

∣
∣
∣
∣

2
1

π2

ω2
S

ω2
L

ωS

c2A2
L

ΓL→S . (2.3)

3Actually, this is just a slice of a cone!
4Note that there are two related cones, dΩ d~ω inside the sample, and dΩ′ d~ω′ outside. They turn out

to contain the same number of modes of the elmag field.
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2.2. THEORY OF ELECTRONIC RAMAN SCATTERING 11

The square of the vector potential AL has the dimension Energy/Length, and consequently
the Raman efficiency (2.3) has the dimension 1/(Energy · Length).

2.2.3 Second quantization for photons

Having established the relation (2.3) between the Raman efficiency and the decay rate ΓL→S

for the L-photons in the sample, a major step in the calculation of the Raman efficiency is
done. The following considerations do not depend anymore on issues related to the geometry
of the sample or the change of the refractive index when passing the sample surface. One
remark, however, still has to be given. It was stressed already, that inside the sample, we
use the quantized description of the elmag field, whereas outside, the classical description is
applied. Therefore, a relation between the amplitude AL of the plane-wave vector potential
field of the laser beam and the occupation number nL of the L-mode inside the sample has
to be given. This is simply given by identifying the expressions for the energy of the L-mode
in the sample, expressed via the amplitude AL and the occupation number nL, and yields
the expression

nL = VSa
1

8π~c2
ωLA

2
L (2.4)

showing that nL is proportional to the sample volume, as expected.
The quantization of the elmag field inside the sample requires the introduction of the

photon creation and annihilation operators. Consider again the plane-wave vector poten-
tial A(r , t) with wavevector k and a polarization represented by the unit vector ekλ. This
vector potential A(r , t), in the Heisenberg representation, is related to the mentioned oper-
ators by

A(r , t) =

√

2π~c2

Ωω
ekλe

ikr
(
akλe

−iωt + a+
−kλe

iωt
)
. (2.5)

The operator akλ annihilates a photon of wavevector k and polarization ekλ, and a+
−kλ creates

a photon with wavevector −k and polarization ekλ. Both change the total momentum of
the photon field by −k (see Eq. (1.5.15) in [2.1]).

Actually in (2.3) we have to use the velocity of light c′ = c/ñ in the medium, causing an
additional factor |1/ñ2| to appear in terms which are proportional to the vector potential.
In the calculation of the decay rate ΓL→S in the next sections, however, we use the vacuum
velocity of light, and account for the factor |1/ñ2| in (2.3), which becomes

d2S

dΩ d~ω
=

∣
∣
∣
∣

4

1 + ñ2

∣
∣
∣
∣

2
1

π2

ω2
S

ω2
L

ωS

c2A2
L

ΓL→S (2.6)

(cf. [2.2]).

2.2.4 The Hamiltonian

The sample will be described by a time-independent Hamiltonian H of the form H =
HSa + V + Helmag, where HSa is the Hamiltonian of the sample without the elmag field,5

5without the external elmag field, to be more exact. The quantity HSa describes the system that is left
over, when the laser is switched off, that is, includes the elmag interaction between charged particles in HSa

etc.
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12 CHAPTER 2. ELECTRONIC RAMAN SCATTERING

which is given by Helmag. The interaction between the sample and the elmag field in the
sample is represented by V . This separation allows the states of the sample to be divided
into a part being related to the elmag degrees of freedom |ψelmag〉 and the other degrees of
freedom |ψSa〉.

The calculation of the decay rate ΓL→S can be simplified considerably when moving to the
Heisenberg representation with the elmag degrees of freedom (This is equal to taking Helmag

as the unperturbed Hamiltonian and moving to interaction representation). Then, Helmag

vanishes and the resulting Hamiltonian is given by

H(t) = HSa + V (t) , V (t) = eiHelmagt/~V e−iHelmagt/~ ,

where the interaction becomes time-dependent by virtue of the time-dependence of the
vector potential A = A(t). The states |ψelmag〉 are independent of time now, whereas the
states |ψSa〉 are still time-dependent. The time-dependence of the Hamiltonian allows for
the use of time-dependent perturbation theory to calculate the decay rate ΓL→S.

2.2.5 Raman scattering in crystals

As a very important simplification, we assume the sample to be a crystal, that is, to possess
a discrete translational symmetry. Then the elementary excitations in the sample can be
classified by a quasimomentum q . When the decay of an L-photon into an S-photon is
accompanied by one such elementary excitation, the conservation law

kL − kS = q + G

(where G is a reciprocal lattice vector) holds. Similarly, homogeneity of the system with
respect to time yields the energy conservation law

ωL − ωS = ω ,

for the energy ω of the elementary excitation and the energies ωL and ωS of the photons
taking part in the decay process.6

2.2.6 Different approaches

At least two approaches have been used to derive the decay rate ΓL→S of electronic Raman
scattering in superconductors with anisotropic Fermi surfaces. The first uses Green’s func-
tions [2.3, 2.4, 2.5, 2.6], and the second the kinetic equation [2.7, 2.8]. Both make use of the
simplification of the Hamiltonian by k · p theory, which relates the Raman vertex γk to the
inverse effective mass tensor [2.4, 2.9].

Instead of relating the Raman vertex to the inverse effective mass by using the effective
mass approximation, it is in principle also possible to calculate the Raman vertex directly
using numerical methods like, for instance, the LDA-LMTO, which is discussed in App. B.

6The symmetry of the crystal is a discrete translational symmetry, whereas homogeneity in time corre-
sponds to a continuous translational symmetry. Therefore, the quasimomentum is conserved only up to a
reciprocal lattice vector, while the energy is conserved strictly.
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2.2. THEORY OF ELECTRONIC RAMAN SCATTERING 13

This procedure, however, is problematic because it involves the calculation of matrix ele-
ments of the momentum operator with respect to Bloch functions and is numerically very
expensive. Another approach is to write the Raman vertex as a series of functions which are
orthogonal in the Brillouin zone (or on the Fermi surface) and transform according to some
irreducible representation of the crystal point symmetry group (see App. C). This method
has been used for instance in [2.8] (see also Ref. [2.10] on Fermi-surface harmonics).

In the subsequent subsection, we first use time-independent perturbation theory to de-
fine a perturbation operator, the effective Raman operator HR, which in first order time-
dependent perturbation theory describes the transitions of the system. The Golden Rule is
applied to determine the decay rate ΓL→S which is related to the Raman efficiency by (2.6).
The resulting equation can be connected to the imaginary part of the Raman susceptibility
(defined in (2.29)). Having expressed the Raman efficiency by this quantity, the generaliza-
tion to systems in the superconducting state, or including impurities, is relatively easy when
using the formalism of diagrammatic perturbation theory (see App. D).

2.2.7 The transition rate for electronic Raman scattering

After having defined the differential Raman efficiency d2S/dΩd~ω in (2.2) and having related
it to the decay rate ΓL→S for L-photons in the sample in (2.6), we calculate the Raman
efficiency for electronic Raman scattering by evaluating the decay rate ΓL→S.

The model used describes electrons in a crystal which will be treated in first quantization
based on Bloch functions |nk〉. Furthermore, the photons which constitute the photon field
will be described in the form |{nk~λ}〉 using occupation number representation. The elemen-
tary electronic excitations appearing in the calculation are electron-hole excitations due to
the fact that the number of electrons has to be conserved. Electron-electron interaction is
neglected and will be treated perturbatively later when necessary. Hence, the Hamiltonian,
after transformation to second quantization for electrons, will contain only terms bilinear
in electron creation and annihilation operators of the form αijc

+
i cj, where i, j denote Bloch

states and αij are matrix elements with Bloch states. Furthermore we use the Hamiltonian
(1/2m0)

∑

i p
2
i for the kinetic energy of the electrons (the sum runs over all electrons in the

system).7 This kinetic energy is replaced by the operator p2/2m0 in second quantization.
This can be seen when following our prescription for the calculation which leads to the
matrix elements αij above, and moving to second quantization eventually (see Eq. D.5).

The relevant states in the theory are composed of the state of the electronic system times
the state of the photon system. Electronic excitations are always with respect to the Fermi
sphere which is characterized by the Fermi energy EF and plays the role of the ground state.
Therefore, matrix elements αij ≡ 〈i|α̂|j〉 refer to electron-hole excitations with the electron
in state |i〉 and energy εi − EF < 0, and the hole in state |j〉 and energy εj − EF > 0.

As stressed already, most of the states of the photon system are uninteresting for our
purposes. Raman scattering is a process involving two specific photon modes, the incom-
ing photons or L-photons (kL, eL) and the scattered photons or S-photons (kS, eS), and is

7Recall that a many-particle Hamiltonian H in first quantization, which can be represented as a sum
H =

∑

i h(ri,pi) of single-particle operators h, becomes H =
∑

λµ 〈λ|h|µ〉c+λ cµ in second quantization. The
sum

∑

i runs over all electrons, while the sums
∑

λ,
∑

µ run over all single-particle states. See also App. D,
Eq. (D.5).
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14 CHAPTER 2. ELECTRONIC RAMAN SCATTERING

described by means of the transition rate ΓL→S from the incoming to the scattered photon.
The initial state of the electron-photon system under consideration is therefore given by the
electrons in the Fermi sphere times the photon field corresponding to the laser with nL pho-
tons in state (kL, eL) and the photon field which is occupied by the scattering process with
nS = 0 photons in state (kS, eS) (we are not including anti-Stokes scattering). The final
state, after the Raman scattering process has happened, is given by some excited state of
the electron system and the photon system in the state with nL−1 photons in state (kL, eL)
and nS = 1 photon in state (kS, eS). The initial and final states of the electron-photon
system are therefore

|i〉 = |GS 〉|nL, nS = 0〉
|f〉 = |fel〉|nL − 1, nS = 1〉 . (2.7)

According to (2.7), the matrix elements of bilinear combinations of photon creation
and annihilation operators should all vanish except for the combinations a+

S aL and aLa
+
S ,

where aL annihilates one photon in the state (kL, eL), and a+
S creates another photon in the

state (kS, eS). The corresponding vector field thus can be written (in Heisenberg represen-
tation) in the form

A(r) = AL(r) + AS(r) with
AL(r) = A−

LeLe
+ikLr

AS(r) = A+
S e∗

Se
−ikSr

(2.8)

and the photon operators A−
L and A+

S are proportional to aL and a+
S , respectively.8 Note

that these operators are not hermitian!
The Hamiltonian describing the electrons plus the electron-photon coupling then is given

by substituting p → p − (e/c)A(r) in the kinetic energy of the electrons:

H =
1

2m0

(

p − e

c
A(r)

)2

. (2.9)

When evaluating the square of the parenthesis we encounter an anticommutator {p,A(r)}
which is equal to 2A(r)p + (~/i)divA(r). The second term of this expression vanishes in
the Coulomb gauge. This implies kAk (r) = 0 for the Fourier components of the vector
potential and, therefore the requirement eiki = 0 for i = L, S, that is, the polarization
vectors are perpendicular to the momentum k of the photons. The Hamiltonian

H = H0 +HAp +HA2 ,

HAp = − e

m0c
Ap

HA2 =
e2

2m0c2
A2

(2.10)

will be treated perturbatively in order to obtain the Raman transition rate. We identify
the exponent of e, or equivalently of the vector field A(r), as the order of the perturbation.
Absorption or emission processes involving only one photon, and therefore being of order e1,
are not of interest here since at least two photons are involved in the Raman process. We

8The annihilation operator A−
L (or aL) always appears together with the space function exp(+ikLr) with

a plus sign in the exponent, the operator removes the quasimomentum kL from the photon system and the
function exp(+ikLr) adds it to the electron system.
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2.2. THEORY OF ELECTRONIC RAMAN SCATTERING 15

shall only consider processes of order e2, being consistent with the initial and final states
defined above.

Transition matrix elements of order e2 are generated by the operator HA2 taken in first
order perturbation theory, and also by the operator HAp in second order perturbation the-
ory. We first describe the treatment of HA2 . We consider |fel〉 in (2.7) to be an electron-hole
excitation with the hole of wavevector k in band ni and the electron with wavevector k ′

in band nf . The transitions |i〉 → |f〉 defined in (2.7) when created by an operator V are
described by the matrix element 〈nfk

′|〈nL − 1, nS = 1|V |nL, nS = 0〉|nik〉. For these transi-
tions, the translational invariance of the crystal lattice implies kL−kS ≡ q = k ′−k (modG).
Using this we denote the transition amplitude arising in first order perturbation theory
from HA2 by M

(1)
nf ,ni(q , k) and the one arising in second order from HAp by M

(2)
nf ,ni(q , k).

2.2.8 First order in HA2

The transition amplitude M
(1)
nf ,ni(q , k) generated by HA2 in first order perturbation theory

is simply given by 〈f |HA2 |i〉, that is,

M (1)
nf ,ni

(q , k) =
e2

2m0c2
〈nfk

′|〈nL − 1, nS = 1|A2|nL, nS = 0〉|nik〉

=
e2

2m0c2
〈2A+

SA
−
L〉e∗

SeL〈nfk
′|eiqr |nik〉 .

The inner average is a photon field state average defined by the equation above; the matrix
element with Bloch states an integration over the sample. The quantity q = kL − kS

denotes the momentum transferred in the scattering process from the photon field to the
electron system. Using ψnk (r) = exp(+ikr)unk (r) for the Bloch functions, this reduces to
δk ′−(k+q) ·

∫
u∗nfk ′(r)unik (r), where the integral9 is ∼ δnf ni

+O(qa)2, the linear dimension of

the crystal unit cell being denoted by a. Because q � 1/a in the Raman process, we neglect
the (qa)2 order terms and write

M (1)
nf ,ni

(q , k) = r0〈A+
SA

−
L〉e∗

SeLδnf ni
(2.11)

for the transition matrix element of the transition |i〉 → |f〉 with |fel〉 carrying a hole
(ni, k) and an electron (nf , k + q) (see (2.7)). This transition matrix element is represented
schematically in Fig. 2.2. For all other transitions, the transition matrix element vanishes
because the quasimomentum10 has to be conserved. The quantity r0 = e2/(m0c

2) in (2.11) is
called the Thompson electron radius and the Kronecker symbol δnfni

expresses the fact that
for q � 1/a only intraband and no interband transitions are possible with this mechanism.
This is a very important selection rule which arises from the fact that for fixed k the periodic
parts of the Bloch functions of different bands are orthogonal.

It is clear that in a clean metal the transition under consideration only leads to elastic
light scattering because the initial and final states must be the same. If impurities are
present, or the crystal is in the superconducting state, Eq. (2.11) also leads to inelastic light
scattering.

9Bloch functions ψnk (r) are orthogonal in the crystal:
∫

cry ψ
∗
n′k ′(r)ψnk (r) d3r ∼ δn′nδk ′k , whereas the

lattice-periodic functions unk (r) are orthogonal for fixed k in the unit cell:
∫

u.cell
u∗n′k (r)unk (r) d3r = δn′n.

10Note that Umklapp processes are neglected in the transition under consideration.
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ωSeS

LωeL

(n ,k’)f

(ni ,k)

fi
Figure 2.2: Diagram of the transition induced by the operator HA2 and showing the vertex
responsible for the transition. The vertical lines denote the initial and final state, respec-
tively.

ωSeS

ωSeS

LωeL

LωeL

mi f

Figure 2.3: The two possibilities for annihilating a photon and creating another one along
with an electronic pair excitation, involving an initial state i, an intermediate state m, and
a final state f .
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2.2.9 Second order in HAp

The transitions generated by the operator HAp are emission and absorption when treated
only up to first order perturbation theory. We are interested in two-photon processes and
therefore apply second order perturbation theory to HAp . The second order perturbation
involves a virtual transition from a state |i〉 to an intermediate state11 |m〉 and subsequently
a transition to the final state |f〉, and sums over all possible intermediate states. Because
of A = AL + AS, two processes are possible: the first, annihilating a photon while going
from |i〉 to |m〉 and creating a photon while going from |m〉 to |f〉 and vice versa for the
second process (schematically shown in Fig. 2.3). The intermediate state of the photon field
is |nL − 1, nS = 0〉 for the first case and |nL, nS = 1〉 for the second case. The matrix element
for the transition |i〉 → |m〉 while absorbing a photon is

− e

m0c
〈m|ALp|i〉 = − e

m0c
〈nL − 1, nS = 0|A−

L |nL, nS = 0〉×

× 〈nmk ′|eLe
ikLrp|nik〉

= − e

m0c
(A−

L)mi〈nmk + kL|eLp|nik〉δk ′ ,k+kL
.

The sum over all intermediate states |m〉 is given now by a sum over all bands nm, the other
quantum numbers of |m〉 being fixed. The notation (A−

L)mi refers to the matrix element
of A−

L taken with the photon field parts of the states |m〉 and |i〉. Taking into account the
energy difference of the initial and intermediate states to be εnik − (εnm,k+kL

− ωL), and
the fact that (A+

S )fm(A−
L)mi = (A−

L)fm(A+
S )mi = 〈A+

SA
−
L〉 for the appropriate states, the

transition matrix element is found to be

M (2)
nf ni

(q , k) = r0〈A+
SA

−
L〉
∑

nm

Γ(2)
nfni;nm

(q , k) (2.12)

with the expression from second order perturbation theory12

Γ(2)
nfni;nm

(q , k) =
1

m0
×

×
[〈nfk + q |e∗

Sp|nmk + kL〉〈nmk + kL|eLp|nik〉
εnik − εnmk+kL

+ ~ωL + i0
+

+
〈nfk + q |eLp|nmk − kS〉〈nmk − kS|e∗

Sp|nik〉
εnik − εnmk−kS

− ~ωS + i0

]

(2.13)

and the two terms being related to the two processes in Fig. 2.3. At T = 0, the difference
εnik − εnmk+kL

is negative, so the first term may be resonant for certain electron-hole exci-
tations whereas the second will never be. The wavevectors of light, kL and kS, can usually
be neglected in the matrix elements of Eq. (2.13) because vF � c. For the same reason,

εnm,k+kL
≈ εnm,k . Therefore, we introduce the symbol Γ

(2)
nf ni;nm(k) to denote expression (2.13)

with the light wavevectors set equal to zero.

11the transition to an intermediate state is called virtual if energy is not conserved. The violation of
energy conservation appears only in perturbation theory. It is, however, possible if confined to a short time
interval.

12Note that the application of the Golden Rule finally enforces energy conservation in the form of ωL−ωS =
εnfk − εnik .
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ωL
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Figure 2.4: Four different cases for the second order transition. For the description refer to
the text.

In Fig. 2.4, we show four different (Ap)2 transitions which all contribute to Raman
scattering. In case (a) the real and virtual transitions both are intraband transitions. This
case is prohibited by the selection rule if the metal is clean (and not superconducting). The
real and virtual transitions both are interband transitions in the other 3 cases. The first
one (b) is above the resonance, the second one (c) is resonant, and the last one (d) is below
the resonance.

2.2.10 Raman vertex

We find the total transition rate13 |i〉 → |f〉, which for transitions of second order in the
vector field can be expressed as

Mnf ni
(q , k) = M (1)

nf ni
(q , k) +M (2)

nf ni
(q , k)

= r0〈A+
SA

−
L〉e∗

S

[

δnf ni
+
∑

nm

Γ̂(2)
nfni;nm

(q , k)

]

eL .
(2.14)

The symbol Γ̂
(2)
nf ni;nm denotes the tensor that, when multiplied from the left by e∗

S and

from the right by eL, yields the quantity Γ
(2)
nfni;nm in (2.13). We define an effective Raman

operator HR that reproduces the transition amplitude (2.14) in first order perturbation
theory:

HR = r0〈A+
SA

−
L〉

∑

nf ,ni,k

e∗
Sγ̂nf ni

(q , k)eL|nf ; k + q〉〈ni; k | (2.15)

13Recall that |f〉 is given by (2.7) and |fel〉 denotes an electron-hole excitation with quasimomentum k .
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where the second rank tensor γ̂nfni
(q , k) is the (dimensionless) nondiagonal Raman vertex

tensor which is given by

γ̂nfni
(q , k) = δnf ni

+
∑

nm

Γ̂(2)
nfni;nm

(q , k) . (2.16)

We introduce also the symbol γnfni
to denote the nondiagonal Raman vertex for fixed light

polarization vectors eL and e∗
S,

γnfni
(q , k) = e∗

S γ̂nfni
(q , k)eL . (2.17)

It can be easily seen that

〈nf ; k
′|HR|ni; k〉 = Mnf ni

(k ′ − k , k) ,

in other words the transition rate Mnf ni
(q , k) can be obtained by just treating the effective

Raman operator HR in first order perturbation theory, the second order effects via HAp are
subsumed in (2.15).

We already mentioned that the product of |q | with the lattice constant a, that is, a|q |
is of order vF/c, and therefore the limit q → 0+ can be taken. We consequently introduce
the notation

γnfni
(k) = lim

q→0+
γnfni

(q , k)

and replace k + q by k .
The perturbing operator HR must be a hermitian operator. This imposes the condition

γnf ni
(k , q) = γ∗ninf

(k + q ,−q) or γnfni
(k) = γ∗ninf

(k) for q → 0 (2.18)

on the Raman vertex and just states that the amplitudes of processes which are related by
a time-reversal are related by complex conjugation.

The matrix |nf ; k + q〉〈ni; k | in (2.15) is analogous to the bilinear operator combina-
tion c+nf ,k+qcni,k in the formalism of the second quantization. Definition (2.15) is therefore
equivalent to

HR = r0〈A+
SA

−
L〉 ρ̃q ; ρ̃q =

∑

nf ,ni,k

γnfni
(k , q) c+nf ,k+qcni,k (2.19)

which is the effective Raman operator expressed in terms of fermionic creation and annihi-
lation operators for Bloch electrons and the nondiagonal Raman vertex (2.16).

We next evaluate the factor 〈A+
SA

−
L〉. Using the normalization inherent in (2.5), the

quantities A+
S (t) and A−

L(t) are given explicitly by

A−
L (t) =

√

2π~c2

VSaωL

e−iωLtakLλL
, A+

S (t) =

√

2π~c2

VSaωL

eiωSta+
kSλS

,

and the matrix element 〈A+
SA

−
L〉 becomes

〈A+
SA

−
L〉 ≡ 〈nL − 1, 1S|A+

S (t)A−
L (t)|nL0S〉 =

2π~c2

VSa
√
ωLωS

e−iωt√nL (2.20)
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where ω = ωL−ωS. Note that nL is proportional to the sample volume, therefore 〈A+
SA

−
L〉 is

proportional to V
−1/2
Sa . The dimensions of 〈A+

SA
−
L 〉 are Energy/Length, so that HR in (2.19)

has the correct dimensions of an energy.
The effective Raman operator HR can be treated by methods which are essentially

equivalent to Fermi’s Golden Rule. As a result, the contribution of a certain transition
ni → nm → nf at a certain point k in k-space, for a Raman shift εnfk − εnik , has an ampli-
tude given by the product of the transition matrix elements of the two virtual transitions
divided by the corresponding resonance denominator.

We revisit our derivation of the Raman vertex now. For the calculation of the transition
rate from |i〉 to |f〉, we made use of the Golden Rule. The Golden Rule states that the
transition rate is given by

Γi→f =
2π

~
|〈f |V |i〉|2δ(Ef − Ei) , (2.21)

where H = H0 + V is the Hamiltonian and |i〉 and |f〉 are eigenstates of H0 with eigenval-
ues Ei and Ef , respectively.

In our case, the perturbation is given by V = HAp +HA2 . This gives rise to contributions
to the transition rate which are proportional to (i) the term |〈f |HAp |i〉|2, which corresponds
to absorption/emission, and (ii) the term |〈f |HA2|i〉|2, which is related to Raman scattering.
Cross terms vanish identically.

It is clear that in higher order perturbation theory, the term HAp also will yield a
contribution of fourth order in the vector potential A to the transition rate. In the approach
given, we have tackled this problem by using Golden Rule. However, as a final state, we did
not use the eigenstate |f〉 of H0. Instead, we calculated the correction to |f〉 in first order
(stationary) perturbation theory. This yields

|f〉(1) = |f〉 +
∑

m6=f

〈m|V |f〉
Ef − Em

|m〉 . (2.22)

The state |f〉(1) was used in the Golden Rule (2.21). The resulting transition rate Γi→f then
also contains contributions proportional to (Ap)4 and A2(Ap)2. Additionally appearing
terms in order A6 and higher are neglected. This method yields the result (2.16) for the
Raman vertex.

In a strict derivation of the transition rate, however, we should employ time-dependent
perturbation theory in second order in the perturbation V . Performing this by using the time
evolution matrix U defined in App. D is rather straightforward. Two eigenstates |i〉 and |f〉
of H0 are given at t = 0, when the perturbation V is suddenly switched on. Then |i〉 evolves
in time according to H0, while |f〉 evolves according to the full Hamiltonian H = H0 + V .
The transition probability Pi→f(t) is given by Pi→f(t) = 〈i|f〉(t). The time evolution of |f〉
is expressed in second order in V by using the evolution matrix U . Then, Γi→f can be
calculated and the result (2.16) is recovered.

So far the derivation has been quite general. Before discussing the Raman vertex for a
particular situation, we compare real intraband transitions to real interband transitions, that
is, transitions with nf = ni to transitions nf 6= ni (if the bands ni and nf are degenerate,
transitions connecting them count as interband transitions for the purpose of our discussion).
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Because of energy conservation in a real transition, an intraband transition only con-
tributes to the Raman spectrum at a vanishing Raman shift, the contribution is given by
the Golden Rule and proportional to

|HR|2δ(ω)

where ω ≡ ωL −ωS. The presence of lifetime broadening, induced, for instance, by impurity
scattering may change this fact and allow for contributions to the Raman spectrum at ω 6= 0.
In the theory, the δ-function in the equation above then is replaced by a Lorentzian whose
width is determined by the inverse scattering time (for simple cases of impurity scattering).

A similar effect arises from superconductivity. In this case, the ground state of the system
is very different from that of a Fermi liquid, and the δ-function above must be replaced by
the so-called Tsuneto-function, which in ω-space is different from zero up to an energy of
the order of the maximum of the superconducting gap.

Let us consider now a situation in which εnfk − εnik for nf 6= ni is larger than a certain
threshold δmin for all bands and all points in k-space. The threshold δmin also should be
considerably larger than the inverse scattering length and/or the superconducting gap am-
plitude. Then the contributions from real interband transitions will appear in the Raman
spectrum at Raman shifts larger than ω = δmin. If “broadening-like” effects, like impurity
scattering, or superconducting pairing are present,14 the Raman spectrum does not exhibit
a sharp step at ω = δmin, but the spectrum may extend below this value for the Raman
shift.

In many high-temperature superconductors such situation is obtains. The threshold δmin

may be of the order of 50 meV, as can be inferred from the band structure (Fig. 2 of
Ref. [2.11]); for Raman shifts lower than this value, the Raman spectrum essentially arises
from real intraband transitions.

Therefore, we only consider real intraband transitions and introduce the Raman vertex

γn(k) = γnn(k)

which is also called intraband or diagonal Raman vertex. This vertex has to be determined
by Eq. (2.13), a rather formidable task. To evaluate this equation, matrix elements have to
be known. Fortunately, an approximation known as effective mass approximation allows us
to cast (2.13) into a form which can be related to the inverse effective mass tensor by means
of a result of second order perturbation theory (see, e.g., App. E of Ref. [2.9]).

2.2.11 Effective mass approximation

In systems that exhibit translational invariance, the eigenstates of the single-particle Hamil-
tonian can be chosen to be eigenfunctions of the translation group as well. The resulting
eigenstates then acquire the form ψnk (r) = exp(ikr)unk(r) as given by Bloch’s theorem.
Fixing the quasimomentum k , the functions unk(r) are determined by a Hamiltonian Hk

depending on k as a parameter. The eigenvalue problem then determines the eigenvalues εnk

14Actually these two cases are very different. Impurities produce an incoherent broadening, while super-
conducting pairing is described by a new (coherent) ground state which is different from that of a Fermi
liquid.
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for a fixed k . Now the Hamiltonian Hk is quadratic in k . Replacing k by k + q yields two
terms linear and quadratic in q in addition to Hk . If we take q to be small (in comparison
to the inverse lattice constant), we find using second order perturbation theory for the eigen-
values up to second order in q corrections that correspond to the first and second derivative,
respectively, of the band structure with respect to the quasimomentum and therefore to the
velocity and the inverse effective mass of the Bloch electrons, respectively. Proceeding along
these lines leads to the equation

m0

~2

∂2εnk

∂ki∂kj
=δij+

+
1

m0

∑

n′ 6=n

〈nk |pi|n′k〉〈n′k |pj|nk〉 + 〈nk |pj|n′k〉〈n′k |pi|nk〉
εnk − εn′k

(2.23)

which is called the k ·p effective mass theorem. Between (2.16) in combination with (2.13),
and the Eq. (2.23), there are only two essential differences. The first is the exclusion of the
band n′ = n in the summation above, the other the absence of the laser frequencies ωL and
ωS in the denominator of (2.23). The effective mass approximation reduces (2.16) and (2.13)
to the form of (2.23) by just excluding the nm = ni terms from the summation in (2.16) and
neglecting the laser frequencies in the denominator of (2.13).

For the justification of this rule we first consider the error introduced by excluding
the virtual intraband process from the sum in (2.16). Note again that for the case under
consideration (with ni = nf ) the frequencies ωL and ωS are equal. On the other hand, shifting
states from k to k±kL or k±kS while keeping the band index fixed, just introduces correction
of order v/c to matrix elements. Therefore the two terms in (2.13) cancel for ni = nm = nf

up to contributions of order v/c and can be left out in the summation in (2.16) if there are
nonvanishing contributions of O(1).

Next we focus on the neglection of the laser energies in the denominators of (2.13) and
denote the energy εnmk − εnik of the virtual electronic excitation by ∆εm. Furthermore all
the matrix elements in (2.13) are taken as equal, the resulting right hand side of (2.13) is
denoted by r(∆εm). Performing analogous steps with (2.23) and calling the resulting function
rema(∆εm) we find the functions plotted in Fig. 2.5. Given a certain virtual transition |i〉 →
|m〉 with a transition energy ε, the factor |r(ε)| determines the weight of the contribution to
the Raman efficiency. The figure shows that virtual intraband transitions do not contribute
at all. Virtual transitions with ε ≈ ωL can be in resonance with the incoming photon, and
therefore contribute very strongly. For even larger values of ε, the weight of the contribution
decreases.

For the case of the effective mass formula the resonance behavior is characterized by the
function |rema(ε)|. This function weights very strongly the virtual transitions for ∆εm � ωL

and therefore is a very bad approximation for |r(ε)| in this regime. Around ε = ωL, it does
not resemble the resonance peak in the function |r(ε)| and is a bad approximation as well.
However, for virtual transitions with ε� ωL it should be a very good approximation.

Assuming a sufficiently high minimum transition energy for virtual transitions, (2.16)
becomes equivalent to the expression for the inverse effective mass from k ·p theory and we
can write

γn(k) =
m

~2

∑

i,j

e∗
S,i

∂2εnk

∂ki∂kj
eL,j , (2.24)
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Figure 2.5: The weighting of the transition matrix elements in (2.23) by the numerator with
and without the application of the effective mass approximation. The curve denoted |r(ε)|
shows the exact case, and |rema(ε)| the case after applying the effective mass approximation.

that is, the Raman vertex is equal to the inverse effective mass contracted with the polar-
ization vectors of the laser light and the scattered light.

We conclude this paragraph by stressing again that using the term HR from (2.19) in
conjunction to the intraband Raman vertex γnk = γnn(k) from (2.16) as perturbation to the
Hamiltonian for A = 0 and treating this term in first order perturbation theory is equivalent
to taking into consideration both terms, HA and HA2 [2.4].

2.2.12 The tensorial nature of the Raman vertex

In the effective mass approximation (2.24), the tensorial nature of the Raman vertex can
be easily seen. Let G denote the point group of a given Hamiltonian. Then the dispersion
relation εnk is invariant15 with respect to the symmetry operations of this group, that is, for
G ∈ G, we have εnk = εn,Gk . As a consequence, the inverse effective mass

µ−1
ij (k) ≡ m

~2

∂2εnk

∂ki∂kj

transforms like a second rank tensor. This is also the case for the Raman vertex tensor γ̂k

defined in (2.17).

In the case when the effective mass approximation is valid, the fact that the Raman
vertex tensor γ̂k from (2.17) transforms like a second rank tensor can be inferred directly
from the analogous property of the inverse effective mass tensor µ̂−1(k).

15The point group of a lattice is also the point group of the related reciprocal lattice. This is not true,
however, for the space group. The reciprocal lattice of a body-centered cubic lattice, e.g., is a face-centered
cubic lattice!
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In the general case, the observation that e∗
S γ̂keL transforms like a scalar also yields the

result that γ̂k corresponds to a second rank tensor.

For a crystal which possesses a certain point group symmetry, a tensor can be decomposed
into components which each transforms according to some irreducible representation (IR)
of the point group. Such decomposition is shown, as an example, in (C.25) for the case of
the C4v point group. In the context of electronic Raman scattering, this decomposition is
important when discussing the electronic screening of the electron-hole excitation created by
Raman scattering. In Subsect. 2.3.6 we will show that the screening is proportional to the
square of the Brillouin zone average 〈γkλk(ω)〉, where λk (ω) is a function with the complete
symmetry of the point group, that is, transforms according to the A1 IR of C4v (we continue
using C4v as an example for the crystal point group). For all IR’s µ different from A1,

the related component γ
(µ)
k (called the µ component of γk ) of the Raman vertex tensor γ̂k

implies the vanishing of 〈γ(µ)
k λk (ω)〉 due to symmetry reasons. Therefore, we can conclude

that electronic scattering is present only in the A1 component of γk and, hence, only the µ
component of the Raman tensor is screened.

Usually for a certain IR µ, the µ component of the Raman vertex tensor can be “selected”
by choosing a certain polarization configuration (es, eL), such that γ

(µ)
k = e∗

S γ̂keL. For the
case of C4v this is possible, and (xy) selects the B2 component of the Raman tensor (the
A2 component vanishes in the effective mass approximation). In conclusion the Raman
efficiency in (xy) is not influenced by electronic screening.

2.2.13 Scattering efficiency and Raman susceptibility

By lumping together all the transitions leading to Raman scattering and arising from the cou-
pling of the photon field to the electrons, we defined the effective Raman operator in (2.19),
which when applying the Golden Rule yields the decay rate ΓL→S . This decay rate, on the
other hand, is related to the Raman efficiency by (2.6). Our final goal now is to express the
decay rate ΓL→S by a susceptibility which can be determined by diagrammatic perturbation
theory. This is done via an intermediate step. The Golden Rule yields an expression which
is proportional to a modified dynamical structure factor S̃ of the sample. In an isotropic
situation (when the Raman vertex is independent of k), this quantity is proportional to the
dynamical structure factor S(q , ω), which is a measure for density-density fluctuations in
the sample. It is straightforward to relate S̃(q , ω) to the imaginary part of a susceptibility,
the Raman susceptibility χRaman , by using the fluctuation-dissipation theorem.

To establish the relation of the decay rate Γ(kL, eL; kS, eS) ≡ ΓL→S to the dynamical
structure factor, we add the time evolution factor e−iωt = e−i(ωL−ωS)t from the vector po-
tential operators to the effective Raman operator (2.19) and use the Golden Rule to find
the transition rate from a state |i〉 to a state |f〉 of the sample. Then, we sum over all final
states |f〉 of the sample and do a thermal averaging over the initial states |i〉. The transition
rate from a state with nL ≡ nkLeL

laser photons and no scattered photon to a state with
nL − 1 laser photons and nS ≡ nkSeS

= 1 scattered photon at a temperature T is given by
the expression

ΓT (kL, eL; kS, eS) =
2π

~
r2
0 ·
∣
∣〈A+

SA
−
L〉
∣
∣
2 · S̃T (q , ω) (2.25)
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(the superscript T denotes temperature dependence of the decay rate) whereas

S̃T (q , ω) =
∑

i,f

e−βEi

Z0
|〈f |ρ̃q |i〉|2δ(Ef − Ei + ~ω)

(2.26)

is a generalized dynamical structure factor (of the sample!), which has the dimension
1/Energy and is proportional to the sample volume VSa. The partition function is de-
noted by Z0, and β is the inverse temperature in energy units. Notice at this point that the
effective density operator ρ̃q is defined by (2.19) using the Raman vertex γnfni

(k , q) and the
electron creation and annihilation operators. The Raman vertex γnfni

(k , q) is meant for a
given polarization configuration (eL, eS) (see 2.17).

When using matrix notation, the Raman vertex would read

γnfni
(k , q) =

∑

i,j

e∗
S,iγnfni;ij(k , q)eL,j , (2.27)

and the Raman efficiency becomes

d2S

dΩd~ω
(ω) =

∑

i,j,k,l

e∗
S,ie

∗
S,j

d2Sijkl

dΩd~ω
(ω)eL,keL,l

where the 4th rank tensor Sijkl is independent of the polarization configuration (see [2.12],
Eq. (2.55)).

We relate now the decay rate ΓT in (2.25) to the Raman efficiency defined in (2.6), use
the expression (2.20) to relate the matrix element 〈A+

SA
−
L〉 to the occupation number nL,

and (2.4) to relate nL to the (classical) vector potential field amplitude AL. Then,

d2S

dΩ d~ω
(q , ω) =

∣
∣
∣
∣

4

1 + ñ

∣
∣
∣
∣

2
1

VSa
r2
0

(
ωS

ωL

)2

S̃(q , ω) . (2.28)

The factor r2
0/VSa has the dimension 1/Length and is proportional to the sample volume VSa.

Together with the structure factor, the Raman efficiency consequently has the dimension
1/(Length · Energy) and does not depend on the sample volume.

Finally, one can define a retarded linear response function, the retarded Raman suscep-
tibility

χret
Raman(q , t) =

i

~
Θ(t) Tr{Z−1

0 e−βH0 [ρ̃q (t), ρ̃−q (0)]} (2.29)

and its Fourier-transformed χret
Raman(q , ω). To relate the imaginary part of this quantity to

the structure function S̃T (q , ω), we use the fluctuation-dissipation theorem.16 The result is

S̃T (q , ω) = − 1

π
(1 + nω) Imχret

Raman(q , ω) (2.30)

with the Bose-Einstein factor nω = [exp(βω) − 1]−1.

16See, e.g., Sect. 2.6 in the book of Rickayzen [2.13].
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The derivation of (2.30) from (2.26) and (2.29) is standard. The trace is written as
Tr{O} =

∑

i 〈i|O|i〉, and in between the ρ̃ operators, a unit operator
∑

f |f〉〈f | is inserted.
Taking then the imaginary part an comparing the result to (2.26), the fluctuation-dissipation
theorem (2.30) is found.

We summarize the result for the Raman efficiency obtained so far. The relation to the
imaginary part of the retarded Raman susceptibility, defined in (2.29), is given by

d2S

dΩ d~ω
(ω) = − 1

π
(1 + nω)

∣
∣
∣
∣

4

1 + ñ2

∣
∣
∣
∣

2
r2
0

VSa

(
ωS

ωL

)2

ImχRaman(q , ω)

∣
∣
∣
∣
∣
|q |→0+

. (2.31)

When applying this formula, the following facts have to be kept in mind:

• The quantity S (also known as d2S/dΩd~ω) on the left hand side is the Raman effi-
ciency per unit penetration depth as defined in (2.2).

• On the right hand side, there is a minus sign, because the imaginary part of a retarded
susceptibility is always negative. We quote Im(ω − ω0 + i0)−1 = −πδ(ω − ω0) as an
example. The factor 1/π cancels the factor π in the expression for half of the residue
of the simple pole (ω − ω0 + i0)−1.

• The factor 1 + nω takes into account stimulated emission of S-photons for tempera-
tures T > 0. It becomes 1 for kBT � ω and kBT/ω for kBT � ω and is important
therefore only for finite temperatures and Raman shifts comparable to kBT .

• The factor |4/(1 + ñ2)|2 involves the refractive index ñ and takes into account reflection
losses etc. (see (2.6) and [2.2]).

• VSa represents the illuminated volume of the sample, that is, the illuminated area times
the penetration depth.

• The factor (ωS/ωL)2 would become (ωS/ωL) when defining the scattering efficiency by
the number of scattered photons normalized to the number of incoming photons. But
we used energy current densities instead of particle current densities.

• The imaginary part ImχRaman of the Raman susceptibility is proportional to the sample
volume VSa and cancels the factor 1/VSa such that the Raman efficiency (per unit
penetration depth) becomes independent of the sample size.

• The dependence of the Raman efficiency on the polarization configuration is put into
the Raman susceptibility. The Raman vertex used in the definition (2.29) and (2.19)
of the Raman susceptibility is given by (2.27).

The evaluation of the Raman susceptibility shall be given separately, (i) in Sect. 2.3 for
the superconducting phase and for Raman shifts in the pair breaking region, and (ii) in
Sec. 2.4 for large Raman shifts in the superconducting phase and for the normal phase.
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2.2.14 The Raman susceptibility and Feynman diagrams

Equations (2.28) and (2.30) relate the Raman efficiency directly to the imaginary part of
the Raman susceptibility. This is a very important result, because we will see that the
Raman susceptibility is related to the polarization loops in the theory of Green’s functions
(see App. D). We can therefore employ Green’s function techniques to calculate the Raman
susceptibility, and will find this possibility indispensable when trying to generalize (2.26)
to the case when the system is superconducting, includes impurities, or when electronic
screening has to be taken into account.

Relating the Raman efficiency to the methods of Green functions, however, requires
another intermediate step. This is the time-ordered Raman susceptibility , given by

χRaman(q , t) = − i

~
〈0|T{ρ̃q(t)ρ̃−q (0)}|0〉 (2.32)

for the zero-temperature case. For finite temperatures, the generalization of the time-ordered
Raman susceptibility requires the methods of the imaginary-time Green’s functions (also
called Matsubara Green’s function. See [2.1], Chap. 3.2). It can be seen rather easily that
the retarded and the time-ordered Raman susceptibility are related mutually by

ReχRaman(q , ω) = Reχret
Raman(q , ω)

ImχRaman(q , ω) = sign(ω) Imχret
Raman(q , ω) .

(2.33)

But because in (2.30) we are interested usually only in nonnegative frequencies, it is possible
to just consider the time-ordered Raman susceptibility.

We now express the time-ordered Raman susceptibility using Green’s functions. Inserting
the Raman vertex (2.16) into the definition of the time-ordered Raman susceptibility (2.32),
and using the expression for the effective Raman density operator from (2.19), expectation
values of the form (note (2.18))

∑

kk ′

γ(k , q)γ(k ′,−q)〈0|T{c+k+q(t)ck (t)c
+
k ′−q(0)ck ′(0)}|0〉 (2.34)

appear. Using Wick’s theorem (see App. D), the time-ordered expectation value can be
written as

δq ,0Θ(ξk − ξF )Θ(ξk ′ − ξF ) − i2G(k + q , t)G(k ,−t)δk+q ,k ′ . (2.35)

As already stressed and in view of the fact that c � vF , we consider the case q → 0, but
q 6= 0, in Raman scattering. Using the expression (2.18) which relates the amplitude of
time-reversal-related Raman processes, the time-ordered Raman susceptibility becomes

χRaman(q , t) =
i

~

∑

k

|γ(k , q)|2G(k + q , t)G(k ,−t) (2.36)

and is expressed in the diagram in Fig. 2.6 (for simplicity, we only take into account one
electronic band. The extension to the case of more than one band is straightforward).

Figure 2.6 shows the diagram in the standard way. At the vertex γk , an incoming photon
of wave vector kL and frequency ωL is annihilated, an electron-hole pair with a wave vector
of q is created, while a scattered photon of wave vector kS and frequency ωS is created. The
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fact that the Raman vertex appears twice in the diagram, is directly related to the Golden
Rule, in which it also appears quadratically . The δ-function in the Golden Rule is given by
the imaginary part of the self-energy corresponding to the polarization-loop-like diagram in
Fig. 2.6.

γk

ωk+q,
*γk

ωL ωL

ωS

k,ω

Figure 2.6: The polarization loop for the Raman susceptibility.

Remembering that the Raman vertex is a sum of two contributions, namely the vertices
shown in Figs. 2.2 and 2.3, we can consider the Raman susceptibility to consist of the four
contributions in Fig. 2.7.

The panels (a) and (d) in Fig. 2.7 show the contributions from scattering via the Hamil-
tonians HAp and HA2 , respectively. The other two panels (b) and (c) are interference
contributions.

We call the vertex in Fig. 2.2 the ρ-part of the Raman vertex , because in the isotropic
case, when γk is k -independent, Fig. 2.7(a) describes the density-density response function
(susceptibility). The vertex in Fig. 2.3 will be called the jj-part of the Raman vertex ,
because the vertices are related to matrix elements of the momentum operator and therefore
to the current operator.

The vertical lines in the four diagrams of Fig. 2.7 denote the final state of the Raman
scattering process for which energy conservation is enforced. Just calculating the diagram (d)
according to Feynman’s rules and ignoring the vertical line, would give a wrong result,
because it contains also contributions, which are renormalizing the dielectric function, that
is, they are related to light absorption and not Raman scattering (see Subsect. 3.4.1).

2.2.15 Some preliminary words about electronic screening

The electronic screening caused by the presence of the Coulomb interaction is treated using
quantum many-body theory and the random phase approximation (RPA). The effect of
screening an electron-hole excitation (whose electron possesses a wavevector k and is in
band nf , and whose hole possesses a wavevector −k and is in band ni) on an electronic
susceptibility is given in the framework of this approximation by the equation equivalent
to the sum of the diagrams shown in Fig. 2.8(a) which involves the effective or screened
Coulomb interaction depicted by the double wavy line. This effective Coulomb interaction
is defined by the series in Fig. 2.8(b), a summation over the quantum numbers (α, β, q),
(α, β, q), etc., is implied (Greek letters denote band indices). The screening is related to
the longitudinal dielectric function, whereas the refractive index in (2.31) is related to the
transversal dielectric function.
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(a)

(b) (c)

(d)

Figure 2.7: Diagrams for the four lowest order contributions to electronic Raman scattering.

The following discussion of electronic screening is based upon the assumption [2.5] that
the Coulomb matrix element between states in one and only one band is much larger than
between states in different bands.

We start the discussion with the ρ-part of the Raman vertex, the easier one. In the
diagram of Fig. 2.2, there is only one electron-hole excitation to be screened. If we screen the
electron-hole pair by the effective Coulomb interaction, we obtain the diagram in Fig. 2.9(b)
in addition to the one in Fig. 2.2. The selection rules tell us that the electron-hole excitation
created by the light is an intraband excitation, that is, α = β. The effective Coulomb
interaction is large if all the states involved in the matrix element are from the same band.
Therefore, the diagram with α = β = γ = δ is larger than the other ones which will be
neglected. We conclude that the electronic screening is intraband screening only for the
ρ-part of the Raman vertex.

The jj-part of the Raman vertex (Fig. 2.3) is more delicate, because it can be screened
in two different places: after the creation of the initial electron-hole pair, that is, in the
intermediate state with no photons, or after the emission of the scattered photon, denoted
by A and B, respectively, in the diagram (a) of Fig. 2.9. Let us look closer to the case A. The
incoming photon is annihilated and an electron-hole pair is created in the first vertex. The
selection rules for the Ap vertex require this electron-hole pair to correspond to an interband
excitation, and therefore the states α and β must be in different bands. The Coulomb matrix
element related to case A therefore involves states from different bands and is consequently
very small. We will therefore neglect electronic screening of the electron-hole pair present in
the intermediate state.

The discussion of case B is similar to the related issue for the ρ-part of the Raman vertex.
The selection rules demand γ 6= δ. The emission of the scattered light causes a transition
of the electron (or hole) from band γ to ε. Therefore, both cases, δ = ε and δ 6= ε are
possible. The one which will not be neglected has δ = ε = ξ = η. And consequently, from
the transitions generated by the Ap vertex only the intraband transitions will be screened .
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nfk’

ni
k

nfk’

nfk’

ni
k

ni
k

nfk’

ni
k

= +

q α

q β

α’q’

β’q’q α

q β

q α

q β

= + + + ...

1 −

=
1

(b)

(a) (scr)

Figure 2.8: (a) Electronic screening of an electron-hole loop, and (b) the effective Coulomb
interaction. A summation over the quantum numbers (α, β, q), (α, β, q), and so on, is
implied (Greek letters denote band indices).

α

β γ ε
ζ

η
δ

α

β

γ

δ

(a)

(b)

A B

C

Figure 2.9: Screening the vertices. (a) the jj-part of the Raman vertex, and (b) the ρ-part
of the Raman vertex. The Greek letters denote band indices.
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2.2.16 Effective mass approximation and high-Tc superconductors

According to the LMTO calculations, in the band structure of Y-123 and Y-124, there are
bands above a band gap between approximately 2 eV and 2.5 eV above the Fermi energy.
These bands can present a problem with respect to the discussion on resonance effects in
Subsect. 2.2.11, because they are almost resonant for typical laser wavelengths like 514.5 nm.
The same is true for the conduction bands, which extend until 2 eV above the Fermi surface.
Note that due to the strong on-site repulsion at the Cu atoms, correlation effects are expected
to strongly influence the electronic structure. It is possible that at energies of the order
of 1 eV the Fermi surface the picture of the Hubbard bands[2.14, 2.15, 2.16] is a better
description of the band structure and may explain the weak dependence of the Raman
spectra on the laser frequency observed for laser frequencies in the visible range. The band
structure shows many bands at about the laser frequency below the Fermi energy. These
should yield resonant contributions to the Raman efficiency.

Because the Raman vertex γk is, in the given approximation, the second derivative of
the energy with respect to k , the A2g component for tetragonal crystals vanishes in this
version of the theory (the irreducible representation A2g corresponds to the symmetry of an
antisymmetric tensor). If one considers once more the effects of a nearby resonance, it can
be easily seen that the Raman tensor does not have to be symmetric. This stresses again
the questionability of the effective mass approach if the scattering is resonant.

2.3 The superconducting state

2.3.1 Introduction

The function which describes the excitations in the superconducting state is the Tsuneto-
function. This function therefore plays a very important role in the theory of electronic
Raman scattering and will be discussed in great detail here.

In a first part, we derive the Tsuneto-function using the formalism of Green’s functions
involving Matsubara-frequencies17 and discuss its poles. Subsequently a short discussion
of vertex corrections follows. Then the Fermi-surface Tsuneto-function is defined and cal-
culated. This function is essentially the Tsuneto-function integrated perpendicular to the
Fermi-surface. Instead of calculating k-space averages involving the Tsuneto-function, in

17The main difference between the Green’s functions G for T = 0 and GT for T 6= 0 is an additional
Boltzmann factor exp(−βH)/Tr exp(−βH) in the average which defines GT . As a consequence, there are
two exponentials exp(−βH) and exp(±iHt/~) in the expression for GT which both have to be expanded
in perturbation series, making this task very complicated. In the Matsubara-formalism [2.17, 2.1, 2.13],
the inverse temperature β is regarded as imaginary part of a complex time variable t̃ = t ± i~β, and
the two exponentials are treated as one. This leads to the definition of the imaginary-time or Matsubara

Green’s function G(τ) with τ = it. For Matsubara Green’s functions, the diagram rules from diagrammatic
perturbation theory are applicable, therefore it can be expanded in a series of Feynman diagrams. The
temperature-dependent Green’s function GT , however, does not have a diagrammatic expansion, but it can
be determined from G by an analytic continuation. It follows from the definition of the Matsubara Green’s
function that G(τ) = −G(τ + β) for fermions, and G(τ) = +G(τ + β) for bosons (with −β < τ < 0 in both
cases). Therefore, the Matsubara Green’s function is periodic in τ and the Fourier transform is given by the
coefficients Gn ≡ G(iωn) (where n is an integer number); the frequencies ωn are called Matsubara frequencies

and given by ωn = 2π(n+ 1)/β for fermions and by νn = 2πn/β for bosons.
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some cases one can do ϕ-integrations18 involving the Fermi-surface Tsuneto-function. Espe-
cially for numerical applications, this is much easier than the k-space integrations.

A next point is the discussion of some limiting cases and singularities which arise when
the imaginary part of the Raman susceptibility is calculated. Then electronic screening is
discussed. The effects of impurities, nontetragonality and the presence of multiple bands are
also treated. Under some particular circumstances the electronic screening can enhance the
imaginary part of the Raman susceptibility. This effect of antiscreening is also investigated.

iωk,

ik+iωk+q,

a*k+q,kak+q,k

Figure 2.10: A polarization loop.

2.3.2 The Tsuneto-function

The Tsuneto-function is the basic function for the calculation of polarization loops in the
superconducting state. To determine this function, we use the temperature-dependent Mat-
subara technique [2.17, 2.13, 2.1, 2.18] and employ Nambu’s formalism [2.19, 2.18]. In this
formalism, the Green’s function of a quasiparticle pair is the 2 × 2-matrix

Ĝ(k , ik0) =
ik0 + ξk τ̂3 + ∆k τ̂1

(ik0)2 − E2
k

, (2.37)

where ik0 is a fermionic Matsubara frequency, Ek =
√

ξ2
k + ∆2

k is the quasiparticle dis-
persion, εk is the dispersion relation of the electrons, ξk = εk − µ the dispersion relation
measured with respect to the chemical potential, ∆k is the gap function, and τ̂i are the Pauli
matrices. When calculating polarization loops (Fig. 2.10) for the superconducting state, the
symmetry of the vertices ak+q ,k with respect to the transformation k → −k plays an im-
portant role. For a current-current polarization loop, which is the quantity to be calculated
when determining the infrared absorption, the vertex in the case q = 0 is proportional to
the momentum operator, and therefore changes sign when k does. The density vertex in the
density-density polarization loop which, for example, occurs in the calculation of ultrasonic
attenuation, or the Raman vertex, both do not change sign when k does. These two cases
are distinguished in the Nambu-formalism in that for the first case, the vertex is proportional
to τ̂0, and in the second to τ̂3 (see [2.18]). We are going to calculate a loop with vertices of
the second type by evaluating the so-called Tsuneto-function [2.20], defined by the diagram
in Fig. 2.10

λk (iω) ≡ − 1

β

∑

ik0

Tr
[

Ĝ(k + q , ik0 + iω)τ̂3Ĝ(k , ik0)τ̂3

]

. (2.38)

18The variable ϕ denotes the azimuthal angle in the two-dimensional (kx, ky) space. It is defined by
tanϕ = ky/kx, and ϕ = 0 corresponds to the kx-axis.
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i zi nF (zi) Resz=zi
L(k , z, q , iω)

1 −iω + E ′ nF (E ′) · E
′(E ′ − iω) + ε′ε− ∆′∆

(2E ′)[(E ′ − iω)2 − E2]

2 −iω − E ′ [1 − nF (E ′)] · E
′(E ′ + iω) + ε′ε− ∆′∆

(−2E ′)[(E ′ + iω)2 − E2]

3 E nF (E) · E(E + iω) + ε′ε− ∆′∆

[(E + iω)2 − E ′2](2E)

4 −E [1 − nF (E)] · E(E − iω) + ε′ε− ∆′∆

[(E − iω)2 − E ′2](−2E)

Table 2.1: Poles of the density-density polarization loop. The unprimed quantities E, ε,
and ∆ have an index k , the respective primed quantities have an index k + q .

In this expression, the trace of products of the form τ̂iτ̂3τ̂j τ̂3 is taken. The trace of τ̂0 is 2
whereas for all other Pauli matrices it vanishes. Of the products τ̂iτ̂j, only those with i = j
are proportional to τ̂0, therefore in the product τ̂iτ̂3τ̂j τ̂3, the condition i = j has to be fulfilled.
The combinations contributing to the trace then are (τ̂0τ̂3)

2 = τ̂0 as well as (τ̂3τ̂3)
2 = τ̂0 and

(τ̂1τ̂3)
2 = (−iτ̂2)2 = −τ̂0. The trace in (2.38) thus becomes

L(k , ik0, q , iω) = 2 · (ik0 + iω)ik0 + ξk+qξk − ∆k+q∆k

[(ik0 + iω)2 − E2
k+q ][(ik0)2 − E2

k ]
. (2.39)

Note that replacing the two τ̂3 vertices in (2.38) by τ̂0 yields the same result with the
exception that the term −∆k+q∆k has a plus sign. In order to evaluate the Matsubara sum
in (2.38), we have to determine the residues of the 4 poles zi of the expression (2.39) in the
complex ik0 plane, and multiply every residue with the value of the Fermi function nF (zi)
at the pole. The resulting four contributions to L(k , ik0, q , iω) are given in Tab. 2.1.

For Raman scattering, the limit q → 0+ is adequate. It implies that the residues at
poles 1 and 4 become equal except for a minus sign. The same happens for the other two
poles. Adding the four terms together yields

λk (iω) = [1 − 2nF (Ek )]×
[
Ek (Ek − iω) + ξ2

k − ∆2
k

2Ek [(Ek − iω)2 − E2
k ]

+
Ek (Ek + iω) + ξ2

k − ∆2
k

2Ek [(Ek + iω)2 − E2
k ]

]

= − tanh

(
Ek

2kBT

)
∆2

k

iωEk

[
1

iω − 2Ek

+
1

iω + 2Ek

]

.

(2.40)

The factor 1/iω vanishes when doing a decomposition in partial fractions, the final result is

λk (iω) = −2 tanh

(
Ek

2kBT

)
∆2

k

E2
k

[
1

iω − 2Ek

− 1

iω + 2Ek

]

. (2.41)

This function is the Tsuneto-function for bosonic Matsubara frequencies iω. The retarded
analytical continuation is performed by substituting iω by ω+ iδ. This yields for T = 0 the
retarded Tsuneto-function

λk (ω) =
|∆k |2
E2

k

[
1

ω − 2Ek + iδ
− 1

ω + 2Ek + iδ

]

. (2.42)
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This function λk (ω) has two poles, at ω = ±2Ek − iδ, corresponding to the excitation energy
of a pair (k ,−k) of quasiparticles. It is a retarded function being analytic in the upper half
plane (UHP) of the complex frequency plane. Note that λk obeys the symmetry relation

λ∗k (ω) = λk(−ω) or
Reλk(−ω) = Reλk (ω)

Imλk(−ω) = − Imλk (ω) .
(2.43)

This relation is mandatory for a susceptibility (such as λk (ω)). Due to the fact that λk (ω)
is analytic in the UHP of the complex ω-plane, the Kramers-Kronig relations (KKR) are
applicable. They are given by

Reλk (ω) =
1

π

∫ ∞

−∞

dω′

ω′ − ω
Imλk (ω

′)

Imλk (ω) = − 1

π

∫ ∞

−∞

dω′

ω′ − ω
Reλk (ω

′) .

(2.44)

The symmetry (2.43) may be included explicitly in the KKR; then the integrals extend over
positive frequencies only.

2.3.3 The Fermi-surface Tsuneto-function

In the numerics section of this chapter (Sect. 2.5), we have to perform Brillouin zone averages
of k -dependent functions (e.g. the Raman vertex) fk weighted by the Tsuneto-function

〈fkλk (ω)〉BZ ≡ V

∫

BZ

d2k

(2π)2
fkλk (ω) .

These averages can be approximated by Fermi surface averages if fk is a function of the
angle ϕ only. To show the explicit relation among the BZ and the FS integrations, we use
a circular two-dimensional Fermi surface |k | = kF and introduce radial coordinates:

〈akλk(ω)〉BZ =

∫
dϕ

2π
aϕ · V

∫
k dk

2π
λk (ω) ≡ 〈aϕλ

FS
ϕ (ω)〉FS ,

where aϕ = ak(ϕ) is a function only depending on ϕ, and λFS
ϕ (ω) is the Fermi-surface

Tsuneto-function (FS-Tsuneto-function) defined by

λFS
ϕ (ω) ≡ V

∫
k dk

2π
λk (ω) . (2.45)

To evaluate (2.45), we write the dispersion law as εk = εk = vF · (k − kF ), the quasiparticle
dispersion as E2

k = ε2k + |∆ϕ|2 (perpendicular to the FS, only εk changes, and parallel to it,
only ∆ϕ changes), and restrict the BZ-integration to a ring kF − δk < k < kF + δk around
the Fermi surface. Introducing also k̃ = k + kF yields

λFS
ϕ (ω) ≈ V

2π

∫ δk

−δk

(k̃ + kF )λk=k̃−kF ,ϕ(ω) dk̃ .
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Let us now write λE,ϕ ≡ λk̃=k̃(E),ϕ which is an even function in k̃. Therefore the term

k̃λk̃ is odd in k̃ and drops out of the integral. Writing ∆ for |∆k | and using dk̃/dE =
EdE/(vF

√
E2 − ∆2) and Ec = E(δk + kF ), we obtain

λFS
ϕ (ω) ≈ 2

V

2π

kF

vF

∫ Ec

0

E dE

vF

√
E2 − ∆2

λE,ϕ(ω) . (2.46)

Because of Imλk (ω) = (|∆k |2/E2
k )[−πδ(ω − 2Ek ) + πδ(ω + 2Ek )], the imaginary part

ImλFS
ϕ (ω) is easily evaluated:

ImλFS
ϕ (ω) ≈ 2

V

2π

kF

vF

∫ Ec

0

E dE√
E2 − ∆2

(

+π
∆2

E2

)

δ(2E + ω)

≈ −π V
2π

kF

vF

4∆2

ω
√
ω2 − 4∆2

for |ω| ≥ 2∆ .

(2.47)

For the case |ω| < 2∆, (2.47) vanishes. Note that (2.47) is an odd function of ω as required
by (2.43). The prefactor V kF/(2πvF ) is the density of states NF (ϕ) at the Fermi surface
per spin and per unit angle ϕ in the two-dimensional k-space. Note that the term εk has
disappeared from the denominator in (2.47). The imaginary part of λFS

ϕ (ω) is now a function
of ω/2∆ only.

The integral appearing in the calculation of ReλFS
ϕ (ω) is more complicated. It is suffi-

cient, to consider only positive frequencies ω > 0, because according to (2.43), ReλFS
ϕ (ω) is

an even function of frequency.
In order to be consistent with the approximations leading to (2.47) we perform a Kramers-

Kronig transformation (KKT) given by (2.44) to obtain ReλFS
ϕ (ω) from the former quantity.

Using (2.47) and ω̃ = ω′/(2∆), we find

ReλFS
ϕ (ω) = −NF (ϕ)

2∆

ω

(∫ −1

−∞
+

∫ ∞

1

)
dω̃

ω̃
√
ω̃2 − 1(ω̃ − ω/(2∆))

. (2.48)

Taking into consideration that ω̃−1(ω̃ − ω/2∆)−1 = (2∆/ω)[(ω̃ − ω/2∆)−1 − ω̃−1] and the
cancellation of the odd term in (2.48) gives

ReλFS
ϕ (ω) = −NF (ϕ)

2∆

ω

(∫ −1

−∞
+

∫ ∞

1

)
dω̃√

ω̃2 − 1(ω̃ − ω/(2∆))
.

The integrals above can be written in the analytic form
{ 4∆√

4∆2−ω2
arctan ω√

4∆2−ω2
for ω < 2∆

2∆√
ω2−4∆2

ln
∣
∣
∣
ω−

√
ω2−4∆2

ω+
√

ω2−4∆2

∣
∣
∣ for ω > 2∆ .

As a final result, the function λFS
ϕ (ω) can be written as

ImλFS
ϕ (ω) = −πNF (ϕ)

2|∆ϕ|
ω

{
0 for ω < 2|∆ϕ|
2|∆ϕ|√
ω2−4∆2

for ω > 2|∆ϕ|
(2.49)

ReλFS
ϕ (ω) = −πNF (ϕ)

2|∆ϕ|
ω

× (2.50)

×







2 1
π

2|∆ϕ|√
4∆2−ω2

arctan ω√
4∆2−ω2

for ω < 2|∆ϕ|
1
π

2|∆ϕ|√
ω2−4∆2

ln
∣
∣
∣
ω−

√
ω2−4∆2

ω+
√

ω2−4∆2

∣
∣
∣ for ω > 2|∆ϕ|
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with the density of states NF (ϕ) = (2π)−1V kF/vF . The logarithm in (2.50) has to be
taken positive for positive frequencies and negative for negative frequencies (i.e. it has to
be multiplied by signω). The imaginary part is an odd function and the real part an even
function of frequency, as demanded by (2.43).

 0

 1

 5

 0  1  2

i(x
), 

r(
x)

Reduced coordinate x

i(x)
r(x)

Figure 2.11: The functions Li(x) and Lr(x) are up to a constant equal to the imaginary
and real part of the FS-Tsuneto-Function, respectively. The x-coordinate corresponds to
the reduced frequency ω̃ = ω/(2|∆ϕ|).

In Fig. 2.11, the functions Li(ω̃) and Lr(ω̃), defined by

ImλFS
ϕ (ω) = −πNF (ϕ) · Li

(
ω

2|∆ϕ|

)

, ReλFS
ϕ (ω) = −πNF (ϕ) · Lr

(
ω

2|∆ϕ|

)

are plotted versus the reduced frequency ω̃ = ω/(2|∆ϕ|). We discuss first the imaginary
part ImλFS

ϕ (ω). This is the negative of the density for quasiparticle excitations at the point
specified by the angle ϕ on the Fermi surface. At this point, the gap has a value of ∆ϕ, and
therefore the function vanishes for frequencies ω less than twice this value. At ω̃ = 1, the
function has a inverse square root singularity, Li(ω̃) ∼ 1/

√

2(ω̃ − 1) which is due to the fact
that the group velocity of the quasiparticles vanishes at ω̃ = 1. For large frequencies ω̃ � 1,
the function Li(ω̃) behaves like ω̃−2.

The real part ReλFS
ϕ (ω) is just the Kramers-Kronig transform of the corresponding

imaginary part. At ω̃ = 0 it takes on the value 2/π. For ω̃ → 1 but ω̃ > 1, it behaves
like Lr(ω̃) ∼ 1/

√

2(1 − ω̃), and for ω̃ → 1 but ω̃ > 1, it becomes −2/π. Note that there is
no pole here! In the case ω̃ � 1, the asymptotic expression Lr(ω̃) ∼ −(1/π)ω̃−2 ln(4ω̃2) is
valid.

2.3.4 Low-frequency asymptotic laws

In the next paragraph, it is shown that the frequency-dependent Raman efficiency, which
is proportional to the Raman susceptibility, is given by Brillouin-zone averages involving
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products of some integer powers of the Raman vertex γk with the Tsuneto-function λk (ω).
Taking this for granted, the Raman efficiency can be shown to obey a very simple power-
law frequency-dependence for frequencies low compared to the gap amplitude. The power-
law dependence can be proved by applying straightforward scaling arguments which are
extensively discussed in Sect. 2.9.

2.3.5 Zero-slope points of the gap-function

In this short paragraph, we show that points where the first derivative of the gap-function ∆ϕ

with respect to ϕ vanishes, produce singularities in the imaginary part of the Raman suscep-
tibility at a Raman shift which corresponds to the value of the gap-function at the zero-slope
point.

As a model for the zero-slope point we take the gap-function ∆ϕ = ∆0 − (∆1/2)ϕ2 (∆0

and ∆1 both are larger than zero, the case ∆1 < 0 < ∆0 is trivial) which has a zero-slope
point at ϕ = 0 with a value for the gap of ∆0.

The imaginary part of the unscreened Raman susceptibility is given by the Fermi surface
average 〈γ2

ϕλ
FS
ϕ (ω)〉FS . We are going to investigate now the region around ω = 2∆0 and

therefore introduce a variable δ by writing ω = 2∆0 + δ. It is clear that for the case under
discussion the ϕ-integration just has to be done in an interval from 0 to some small angle ε
which has to be larger than

√

δmax/∆1, if δmax is the maximum absolute value for δ to be
considered.

The Raman vertex γϕ is assumed not to vanish at ϕ = 0, an can therefore be approxi-
mated by a constant γ0 in the interval under consideration. As a consequence, we have to
discuss only the integral

I(δ) =

∫ ε

0

dϕ ImλFS
ϕ (2∆0 + δ) .

Using (2.49) one notes immediately, that the factor 4|∆ϕ|2/ω is almost constant in the
integration interval an can be taken out of the integral.

We consider first the case δ > 0 for which the imaginary part of the Tsuneto-function
never vanishes. The combination ω2 − |2∆ϕ|2 equals to δ2 + 4∆0δ + 4∆0∆1ϕ

2 + ∆2
1ϕ

4. We
neglect the term proportional to ϕ4, because for sufficiently small ε, this term is much smaller
than the one quadratic in ϕ. The integral then becomes

I(δ) = 2∆0

∫ ε

0

dϕ
1

√

δ2 + 4∆0δ + 4∆0∆1ϕ2
∼ C − 1

2
ln(δ2 + 4∆0δ)

where C is some constant. The term δ2 can be neglected for small values of δ. Therefore,
the imaginary part of the Raman susceptibility behaves like − ln(4∆0δ)/2 for δ > 0.

Next the case δ < 0. Take δ fixed, then ω = 2∆0 + δ < 2∆ϕ in the interval from 0
to some ϕ0(δ). The integration then involves the ϕ-interval from ϕ0(δ) to ε only, and is
dependent on δ. Taking this into consideration and performing steps similar to the ones
from the former case, we obtain the asymptotic behavior − ln(−4∆0δ)/2 for the imaginary
part of the Raman susceptibility at the singularity. This is the same result as in the former
case, but it arises by a delicate cancellation here.

If the Raman vertex becomes zero at ϕ = 0, the replacement of γϕ by a constant γ0 in
the Fermi-surface average is not possible. Instead, it should be replaced by a constant times
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a positive integer power of the angle ϕ. Repeating the calculation above, one can easily
show that the asymptotic behavior at the singularity does not change.

In the next paragraphs, we show that electronic screening is very important for elec-
tronic Raman scattering and can remove the logarithmic singularities mentioned above. We
anticipate the result for the imaginary part of the screened Raman susceptibility, which is
given by the expression

〈γ2
ϕλ

FS
ϕ (ω)〉FS − 〈γϕλ

FS
ϕ (ω)〉2FS

〈λFS
ϕ (ω)〉FS

, (2.51)

(cf. Eq. (2.52) discussed in the next subsection) whose first term is the unscreened contri-
bution, whereas the second one represents the electronic screening. An important property
of (2.51) is its invariance under the replacement γϕ → γϕ + const. Contributions to the
Raman susceptibility which are due to a constant part of the Raman vertex always vanish
when the Raman susceptibility is screened!

Consider again an integration along a short interval from 0 to ε, and approximating the
Raman vertex by a constant γ0 6= 0, we can again take it out of the averages in the screening
contribution: The whole expression (2.51) vanishes. Therefore we conclude that the loga-
rithmic singularities present in the imaginary part of the unscreened Raman susceptibility
are cancelled by similar logarithmic singularities in the screening contribution. The imag-
inary part of the screened Raman susceptibility then is continuous at Raman shifts where
the corresponding unscreened quantity has a singularity.

There is one exception to the observation above. In some cases, the screening term
of (2.51) vanishes identically by symmetry. Then the logarithmic singularity is not removed.
This, however, can be achieved when taking into account vertex renormalizations (see [2.21]).

χ
Raman

χab

χ
Raman

=

=

=

= + + ...

+ + ...

=

1 −

(c)

(b)

(a)
Λ γ

a a ab b b

γ γ γ γ

γγγ γ
+

Figure 2.12: Incorporation of screening effects into the theory of Raman scattering by elec-
tronic excitations in HTSC. The grey shaded bubbles are sums of ladders contracted with
vertices a and b. Wavy lines correspond to the long-range Coulomb interaction, dashed lines
to the attractive pairing interaction. The equation on the last line corresponds to Eq. (2.52).
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2.3.6 Electronic screening

As pointed out in Ref. [2.5], the Raman susceptibility due to pair-breaking processes and
including electronic screening is given by a polarization-like bubble consisting of a renormal-
ized Raman vertex Λk , a Raman vertex γk , and in between two Green’s function lines for
bogolons (which are also called Bogoliubov quasiparticles) (Fig. 2.12(a)). The vertex renor-
malization includes corrections for Cooper-pair-producing attractive interaction as well as
the repulsive Coulomb interaction, the Dyson equation for the vertex Λk in the limit q → 0
is given by Fig. 13 in Ref. [2.5].

To show more clearly the effect of screening, we write the equation for the Raman
susceptibility as given in Fig. 2.12(b) and 2.12(c). Figure 2.12(b) (with a = γk and b =
γk ) shows the unscreened susceptibility χγγ given by a bare polarization bubble with two
Raman vertices γk and the contraction of a BCS-like ladder sum with two Raman vertices.
Therefore, χγγ includes the attractive Cooper-pair-producing BCS interaction. We will see
in the discussion in Sect. 2.10 (see also [2.18]) that the inclusion of the repulsive Coulomb
interaction in the dash-dotted line in (b) is necessary in order to be consistent with the
Ward identities (which correspond to local conservation laws) [2.22, 2.1, 2.18].

We include Coulomb screening by virtue of a RPA-like sum given in Fig. 2.12c. The
effect of screening on the electronic Raman scattering can now easily be seen [2.4]. If we
denote by χab a bubble, renormalized by pairing interaction, with vertices a and b at the
ends as in Fig. 2.12b, the RPA-chain can be easily summed (see Fig. 2.12c) yielding

χRaman(q → 0, ω) = χγγ(ω) − χ2
γ1(ω)

χ11(ω) − V −1
q

∣
∣
∣
∣
q→0

χRaman(q → 0, ω) = χγγ(ω) − χ2
γ1(ω)

χ11(ω)

(2.52)

in the long wavelength limit. In Eq. (2.52) we have used the fact that Vq/(1−χ11Vq) equals
−χ−1

11 in the limit q → ∞.
Without taking into account Coulomb interaction, the Green’s functions have a well-

known massless pole (Goldstone mode) which is a consequence of the breaking of gauge
symmetry in the superconducting phase (see, e.g. [2.23, 2.5]). Coulomb interaction makes
this pole acquire a finite mass (which can be shown to correspond to the plasma frequency),
so if we correctly include Coulomb screening (not done in Ref. [2.24]) we no longer have a
Goldstone mode, but a massive Anderson-Bogoliubov mode [2.23, 2.5, 2.25]. This mode has
the energy ~ωp (ωp is the plasma frequency) at the Γ -point and is therefore negligible for
the low energy behavior of the Raman spectra.

The susceptibilities χab in Fig. 2.12(b) are like a ladder sum contracted with vertices ak

and bk and can be written as a sum

χab(q=0, ω) =
∑

k

akbkλk (ω) (2.53)

which involves the Tsuneto function [2.20] λk (ω). For small values of q (compared to the
inverse coherence length ξ and the Fermi wave vector kF ), the attractive interaction does
not have to be taken into account in the summation of the ladder, and the Tsuneto function
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is given simply by a unmodified bubble (the first term in the series in Fig. 2.12(b) only) and
can be easily evaluated to be

λk (ω) =
∆2

k

E2
k

tanh

(
Ek

2T

)

×

×
(

1

2Ek + ω + i0
+

1

2Ek − ω − i0

)

,

(2.54)

as it was done in Subsect. 2.3.2.
Equation (2.54) involves the gap function ∆k (which depends on temperature) and the

quasiparticle dispersion relation E2
k = ξ2

k + ∆2
k with ξ2

k = (εk − εF )2. The constants ~ and
kB have been set equal to 1. As already mentioned, vertex corrections due to the pairing
interaction are neglected. This approximation is valid for q � ξ−1, kF (Ref. [2.25]) and
ω � ωp, because the Anderson-Bogoliubov pole at the plasma frequency need no longer be
included.

An important fact in the expressions above is that they contain only the absolute square
of the gap function, that is, Raman scattering is not phase sensitive, and consequently cannot
distinguish between a strongly anisotropic s-wave gap |dx2−y2 | and a dx2−y2-wave gap (see
App. E concerning the different possible symmetries of the gap function).

In the preceding calculation of the unscreened correlation functions χab, we have neglected
impurity scattering as well as scattering between quasiparticles (collisionless regime). In
isotropic s-wave superconductors at T = 0 and for Raman shifts ω � 2∆, it is reasonable to
neglect impurity scattering, because in this regime pair breaking by impurity scattering is
not possible [2.26]. Also, the scattering between quasiparticles can be neglected because their
density is very small at low temperatures T � Tc. For d-wave superconductors, however,
this is no longer correct. The effect of impurities will be discussed in the next subsection,
whereas a discussion about scattering between quasiparticles can be found in Sec. 2.4.

The second term of (2.52), representing screening, vanishes if the average of γkλk does.
The Tsuneto function is fully symmetric, that is, has A1g (D4h group) or Ag (D2h) symmetry
regardless of gap symmetry (for the notation of the irreducible representations of point
groups, refer to [2.12], pg. 46f). As a consequence, the screening term vanishes unless the
Raman vertex has the same symmetry as the crystal. In the tetragonal case, A1g-like vertices
are screened, but B1g- and B2g-like are not [2.27]. This is different for orthorhombic HTSC
of the YBCO-type. In this case the Tsuneto function has A1 symmetry, and the same is
true for the dx2−y2-like component of the inverse effective mass (B1g representation of D4h

group, Ag of D2h). Consequently, in these orthorhombic crystals the B1g component is also
screened. This discussion is also applicable to BISCO, but with interchanged roles of B1g

and B2g modes because of the different orientation of the crystallographic unit cell with
respect to the Cu-O bonds.

In tetragonal systems, the B1g component of the Raman vertex has nodes at the same
position as the gap function. This has severe consequences for the low-energy part of the
spectra [2.25]. In two dimensions, the existence of the nodes of the gap function in the case
of a dx2−y2 gap results in a linear density of states at low energies [2.28]. If the vertex has
a finite value in this region, the imaginary part of the Raman susceptibility is also linear in
the frequency. If the vertex has a node, however, its magnitude squared becomes quadratic
with respect to the gap on the Fermi surface. This causes two additional powers of the
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frequency to appear, the B1g component of the scattering efficiency becomes cubic for the
YBCO type at low frequencies [2.8]. Two effects can alter this behavior: an orthorhombic
distortion and impurities.

In our calculations, we focus on a dx2−y2-like gap function which is only a function of the
direction in k-space, but not of the magnitude of k , since the values of the gap functions
sufficiently far from the Fermi surface do not affect the results. We are using the same gap
function for all bands involved. The asymptotic behavior just mentioned is not changed by
using a gap function ∆k = ∆0(k

2
x − k2

y)/k instead of ∆ϕ = ∆0 cos(2ϕ).

2.3.7 Effect of impurities

In contrast to scattering by nonmagnetic impurities in conventional (isotropic) supercon-
ductors, impurity scattering plays an important role for superconductors with anisotropic
gaps and its effect on the Raman spectrum is most pronounced for superconductors which
exhibit regions in k-space where the gap almost or completely vanishes.

The formalism for the theoretical discussion of the impurity effects was set up
in [2.29, 2.30] for heavy-fermion systems. It was applied to d-wave gaps in high-temperature
superconductors in [2.31], where the current-current susceptibility (i.e., the effect on infrared
absorption) was calculated. In Ref. [2.32], the effect of impurities on the density of states
of d-wave and |d|-wave superconductors was compared, and it was shown that impurities
may provide a means for distinguishing between these gap functions. Finally, in [2.33], this
discussion was extended to the case of the unscreened Raman efficiency.

It was shown in Refs. [2.32, 2.33] that in the case of d-wave pairing, impurity scattering
can be described by extending the nodal points on the 2D Fermi surface to small finite regions
with vanishing gap. This causes a nonvanishing density of states at the Fermi energy. For
anisotropic s-wave pairing the gap anisotropy becomes smeared out leading to an increase
of the minimum gap value ∆min. In the case of a |dx2−y2 | gap, this minimum gap increases
monotonically with the impurity concentration ni for small values of ni.

The renormalization of the gap function by the presence of impurities causes an additional
contribution to the Raman spectra, which is linear in the Raman shift ω for small Raman
shifts ω [2.33]. This has consequences for the B1g spectrum of a tetragonal crystal, which, in
the clean limit, should have a cubic ω-dependence, because a linear frequency dependence
is added. As will be discussed in the next subsection, the orthorhombicity of the YBCO
compounds also causes a linear addition to the cubic behavior of the spectrum in the B1g

channel.
In the case of a |dx2−y2 |-like, Ag symmetry gap function the impurity-induced minimal

gap ∆min reflects itself in an excitation-free below a Raman shift of 2∆min.

2.3.8 Effect of orthorhombic distortion

As already mentioned, orthorhombic distortions of the tetragonal symmetry have a differ-
ent effect on Y-123 and on Bi2Sr2CaCu2O8 (Bi-2212). Consider the B1g (D4h) component
of the inverse effective mass tensor in a tetragonal high-Tc superconductor with a dx2−y2-
like gap. The B1g (D4h) inverse effective mass has its nodes in directions bisectioning the
copper-oxygen bonds along x and y. The same is true for the gap function. As mentioned
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above, this results in the ω3-dependence of the Raman efficiency for B1g (D4h) scattering,
in contrast to the ω-dependence predicted for A1g and B2g scattering. Let us now consider
the orthorhombic distortion present in Y-123. The zeros of the B1g (D4h) inverse effective
mass shift because there are no longer mirror planes through the (110) axes. For this rea-
son, the low-energy part of the spectrum acquires a linear component in addition to the ω3

component of the D4h case.
In Bi-2212 the situation is different because the orthorhombic crystallographic cell is

rotated by 45◦ with respect to the a- and b-axes, thus preserving the [a± b, c] mirror planes.
Consequently, the B1g zeros stay at the same position, the low-energy efficiency acquires no
linear component.

For a more elaborate discussion of the orthorhombic distortion and its effect on Raman
scattering, see Sect. 2.9 and [2.28].

2.3.9 Effect of multilayers

In systems with one Cu-O2 plane per primitive cell there is only one Fermi surface and the
fluctuations of the inverse effective mass are essentially intraband fluctuations, which are
very sensitive to the scattering polarizations. The scattering related to the average inverse
effective mass is fully screened. The simplest A1g (D4h) scattering is related to a Raman
vertex component of the form cos 4ϕ while B1g (D4h) scattering is obtained for a cos 2ϕ
vertex. In multilayer systems, interband fluctuations between the various sheets FS are
also important. The lowest component of such fluctuations corresponds to different average
inverse effective masses in each FS sheet. Such fluctuations do not depend on the scattering
polarizations and lead to unscreened scattering of Ag symmetry.

2.3.10 Effect of a sign change of γk on the Fermi surface

The behavior of the Raman vertex near the Fermi surface, especially its sign, is crucial for
the scattering efficiency and, in particular, for the effect of screening. Antiscreening, that
is, an enhancement of the scattering efficiency by screening, can occur if the Raman vertex
changes sign on the Fermi surface. This can be seen by considering the screening part

ImχScr = − Im
χ2

γ1

χ11
(2.55)

of the Raman susceptibility. A positive value of ImχScr enhances the efficiency, that is,
corresponds to antiscreening.

To show how antiscreening arises, we first write the screening term Imχscr in terms of
the real and imaginary parts λ′ ≡ Reλ and λ′′ ≡ Imλ of the Tsuneto function and its
contribution to the Raman vertex γk as

ImχScr =
〈γλ′〉2〈λ′′〉 − 〈γλ′′〉2〈λ′′〉 − 2〈γλ′〉〈γλ′′〉〈λ′〉

〈λ′〉2 + 〈λ′′〉2
. (2.56)

The imaginary part of the Tsuneto function λ′′ is a positive function. Consequently, the
quantity 〈λ′′〉 is a positive function of the Raman shift ω. If γk changes sign in a region
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around the Fermi surface, it is possible that 〈γλ′′〉 changes sign as a function of ω, that is, has
a zero. At the position of this zero, the second and the third term in the numerator of (2.56)
vanish. The first term, 〈γλ′〉2〈λ′′〉, is positive and can become dominant in Eq. (2.56). In
this case antiscreening results. In the next paragraph it will be shown that antiscreening is
particularly sensitive to the sign of the Raman vertex on parts of the Fermi surface around
the directions of the nodes of the gap function ∆k .

2.3.11 Antiscreening and the sign of the Raman vertex

In Subsect. 2.3.10, we pointed out that the effect of antiscreening results from sign changes
of the Raman vertex γk , that is, the inverse effective mass, on the Fermi surface. In this
paragraph we present a different proof using a power expansion of γk .

For very low frequencies ω � ∆0, only the regions around the node directions of the
gap function (we assume a dx2−y2-like gap) contribute to the susceptibility. We focus on a
specific node of the gap function and define the point k0 as the point of intersection of the
node line of the gap function and a specific sheet of the Fermi surface. Then we introduce
an orthonormal coordinate system {k, k⊥} in the a-b-plane in k-space with the origin at k0,
rotated in such a way that the k⊥-axis is perpendicular to the node line and assume that this
is tangent to the Fermi surface. We write the Raman vertex as a series γ(k) =

∑

i γi(k⊥/kc)
i

(where kc is a cutoff), using the assumption that ∂γ/∂k = 0. This approximation is justified
since contributions to the Raman susceptibility mostly arise from a narrow region around
the Fermi surface). We write Eq. (2.56) as

ImχScr =
∑

i

Imχ
(i)
Scr , (2.57)

whereas Imχ
(i)
Scr contains the ith powers in k⊥ from the expansion of γk . The first three

terms in this sum are

Imχ
(0)
Scr = −γ2

0〈λ′′〉
Imχ

(1)
Scr = −2γ0γ1〈k⊥λ′′〉

Imχ
(2)
Scr = −2γ0γ2〈k2

⊥λ
′′〉

− γ2
1

〈λ′′〉(〈k⊥λ′′〉2 − 〈k⊥λ′〉2) + 2〈λ′〉〈k⊥λ′〉〈k⊥λ′′〉
〈λ′〉2 + 〈λ′′〉2

.

Now we investigate the behavior of 〈ki
⊥λ

′′〉 in the low frequency limit. We set vF = 1 and
∆0 = 1 (this represents a simple change in units). Then, Ek = k (Ek is constant as function
of k⊥ by definition), ∆k = k⊥, and therefore ∆2

k/E
2
k = k2

⊥/k
2 and λ′′ ∼ (k⊥/k)

2 · δ(2k − ω)
from Eq. (2.54). We perform a 2D BZ integration which has to be cut off at a value
proportional to ω in the k⊥ integration,

〈ki
⊥λ

′′〉 ∼
∫

dk⊥ dk k
i
⊥ · k

2
⊥
k2
δ(2k − ω) . (2.58)

Introducing polar coordinates k0 and ϕk by k2
0 = k2

⊥ + k2 and tanϕk = k/k⊥, this yields the
low frequency behavior

〈ki
⊥λ

′′〉 ∼
∫

dϕk cos2+i ϕk

∫

dk0 k
1+i
0 δ(2k0 − ω) ∼ ω1+i , (2.59)

c© 1999, Thomas Strohm, www.thomas-strohm.de



44 CHAPTER 2. ELECTRONIC RAMAN SCATTERING

the prefactor vanishes if i is odd. The same is true for the real part 〈ki
⊥λ

′〉. Note that the

proportionality constant in (2.59) is positive. This implies that Imχ
(i)
Scr ∼ ωi+1 and

ImχScr = −
(
α0γ

2
0ω + (α1γ0γ2 + α2γ

2
1)ω

3 +O(ω4)
)

(2.60)

with positive constants α0 and α1. The sign of α2 depends on the specific case.
For a tetragonal Fermi surface, we only have to focus on the A1g mode because the

screening contributions to the other components vanish by symmetry. The A1g symmetry
implies γ1 = 0 because of the σd symmetry operation (reflection at ΓS) which transforms
γ1k⊥ → −γ1k⊥. Then, the screening term for low frequencies can be written as

ImχScr = −
(
α0γ

2
0ω + α2γ0γ2ω

3 + · · ·
)
. (2.61)

If there are nodes in the Raman vertex near the node of the gap function, then γ0γ2 < 0,
that is, the screening term is negative for very small ω, but eventually crosses zero because
of the ω3 contribution. For large ω >∼ 2∆0, the approximation 〈γλ〉 ≈ 〈γ〉〈λ〉 yields χScr =

−〈γ〉2χ11, which is the screening term for an isotropic Fermi surface with a scalar Raman
vertex 〈γ〉, and therefore negative. If the Raman vertex does not show nodes near the node
of the gap function, γ0γ2 is larger than zero, and the screening term is not likely to change
sign.

In the orthorhombic case of a weakly distorted tetragonality, the B1g (D4h) zero in the
Raman vertex may shift with respect to the gap node. This can be described by a small
γ0 6= 0 and γ1 6= 0; we neglect γ2. The low frequency screening term then has the form

ImχScr = −
(
α0γ

2
0ω + α2γ

2
1ω

3 · · ·
)
. (2.62)

Whether antiscreening exists or not depends on the sign of α2.
It can be seen that for small values of γ0, the antiscreening can start already at very

small Raman shifts as is the case in the calculations, Fig. 2.19, B1g panel.

2.4 The normal state

In the normal phase, the exact mechanism responsible for the observed finite Raman inten-
sity which is almost constant over a broad frequency and temperature range, is not known.
Here, we assume a finite lifetime of the quasiparticles since the low-frequency scattering
vanishes in the clean limit. Candidates for this scattering are the quasiparticle-quasiparticle
scattering in Marginal Fermi Liquid theory (MFL) [2.34], impurity scattering [2.30] or scat-
tering due to spin fluctuations [2.35]. A self energy with nonvanishing imaginary part yields
a susceptibility of the form

χab(q=0, ω) =
∑

k

akbkνk (ω) (2.63)

with the relaxation kernel (the function f ′ is the derivative of the Fermi function with respect
to the energy)

νk (ω) = −f ′(ξk)
iΓk

ω + iΓk

(2.64)
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and its imaginary part [2.36, 2.37]

Im νk (ω) = −f ′(ξk)
ωΓk

ω2 + Γ2
k

. (2.65)

This can easily be seen by evaluating a bubble with two Green’s function lines for quasipar-
ticles with an imaginary part Γk of the self energy.

Note that in the superconducting phase for Raman shifts larger than ∼∆, the relaxation
effects described by (2.65) are also of importance.

To describe the constant background in the Raman spectra in the normal phase, one can
adopt the frequency-dependent quasiparticle scattering rate of MFL theory [2.34, 2.38]

Γk (ω) ∼ max(αT, βω) . (2.66)

In order to evaluate the real part of νk using causality arguments, and to prevent divergences,
we introduce a high-frequency cutoff ωC . Note that the nearly antiferromagnetic Fermi
liquid (NAFL) [2.39, 2.40] and also the nested Fermi liquid (NFL) [2.41] yield a very similar
quasiparticle scattering rate. The former can also provide a mechanism, which accounts for
dx2−y2-pairing. Similar results are obtained for Luttinger liquids [2.42].

Equation (2.66) yields a scattering continuum which is constant for frequencies smaller
than min(αT/β, T ) and for frequencies larger than the temperature T , but with different
intensities. In the first case, Γk is proportional to the temperature, that is, Imχ ∼ ω/T .
Multiplying by the Bose factor 1 + nω ∼ T/ω a frequency- and temperature-independent
Raman efficiency is found. In the second case, Γk ∼ ω, and, consequently, Imχ = const.
The Bose factor is also constant and one is left with a constant Raman efficiency. Note
that in the first case, Imχ cancels the ω- and T -dependence of the Bose factor. It has
been shown [2.43, 2.44, 2.38], that YBa2Cu4O8 does not exhibit this behavior. This has
been attributed to the breakdown of MFL theory for not optimally doped cuprates [2.38].
Actually, in this case the spectra are nearly temperature independent after dividing them
by the Bose factor. We shall address this question once more at the end of this section.

We start the discussion of quasiparticle-quasiparticle (qp-qp) scattering, and its influence
on electronic Raman scattering, with the case of a dx2−y2 gap. Suppose the nodes of this gap
have a width δ0 in k-space on the Fermi surface due to impurity scattering. We use the model
of Eq. (2.65) with a quasiparticle scattering rate Γk independent of k and discuss first the
case T = 0. Then it can be seen that the contribution of qp-qp scattering to the imaginary
part of the Raman susceptibility (2.29) for low frequencies ω � ∆max is proportional to the
Drude-like factor ωΓ/(ω2 +Γ2) (which is, for small ω and low temperatures T < ω, linear in
ω if Γ = const (semiconductors) or Γ ∼ max(ω2, T 2) (FL), but constant as a function of ω
if Γ ∼ max(ω, T ) (MFL) (see also [2.45]). In the tetragonal case, it is also proportional to
the density of states at the Fermi surface and in the case of A1g and B2g polarizations to
the width δ0, and in the case of B1g to the third power δ3

0 of the width δ0. The discussion
for BISCO is analogous with the exception that B1g and B2g exchange their role.

Finite, but small temperatures T � ∆max have the effect of enlarging the widths δ0
linearly in temperature, that is, the temperature dependence of the contribution from qp-qp
scattering is proportional to const + T . Note that for T >∼ 0, the Bose factor changes the
linear-in-ω dependence to a constant.
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For the anisotropic s-wave gap of the form |dx2−y2 | which acquires a finite minimum
gap ∆min due to the presence of impurities [2.33], the situation is different. The frequency
dependence is also given by the factor ωΓ/(ω2 + Γ2) in addition to the Bose factor. But the
temperature dependence is different. For temperatures T � ∆min smaller than the minimal
gap, the density of quasiparticles is proportional to exp(−∆min/kT ), that is, the contribution
of qp-qp scattering to the Raman efficiency is exponentially small. At kT ≈ ∆min, this
exponential dependence on T crosses over to a power law.

The background electronic Raman spectrum in the normal phase has been observed to
be independent of temperature for nearly optimally doped high-Tc compounds only. In
the overdoped and underdoped case, the materials seem to show Fermi liquid-like behavior
concerning the quasiparticle scattering rate Γk (for small ω) [2.38, 2.44]. The temperature
dependence of the scattering rate Γk , as defined in (2.65), has been measured [2.46] for
optimally doped and overdoped Bi-2212, and, especially in the case of the B2g (D4h) mode,
the optimally doped sample shows Γ = αT , whereas for the overdoped sample Γ = α′T 2 +
Γ0. Therefore, the overdoped sample shows a normal Fermi liquid behavior, that is, Γ ∼
max(ω2, T 2). The B1g (D4h) mode result for the optimally doped sample yields the puzzling
quasiparticle scattering rate Γ = const.

2.5 The numerical calculation: massf

2.5.1 Prerequisites and definitions

The massf program which we are going to discuss in this chapter performs the k-space inte-
grations required for the calculation of the Raman efficiency for electronic Raman scattering
in superconductors by making use of the Eqs. (2.28), (2.30) in relation with (2.52). We start
this section by defining the choice for the primitive cell, its decomposition into integration
cells (“discretization”) and the treatment of symmetries.

q1

q2

q3

Γ

Figure 2.13: Vectors used in the definition of the primitive cell.

The choice of the primitive cell to be used in massf is dictated by the output of the
LMTO-calculations [2.11] which is used as an input to the massf program. The primitive
cell is spanned by the three reciprocal lattice vectors qi (i = 0, 1, 2). Therefore, the Γ-point is
at the corner of the primitive cell and the primitive cell does not correspond to the standard
(Wigner-Seitz) first Brillouin zone. In order to perform the integrations in k-space, one can
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use the given primitive cell or the standard first Brillouin zone as the integration volume
either: we shall use the former.

Primitive cell: The primitive cell is given by the set of all k-space points k =
∑

i αiqi with
0 ≤ αi < 1.

All the physical quantities which are defined in k-space are given on points of a dis-
cretization lattice. 19 This lattice defines Nc = N1 · N2 · N3 points within the primitive
cell. They are given by the vectors k =

∑

i niti where ni = 0, . . . , Ni − 1 is an integer and
ti = qi/Ni are the translation vectors of the discretization lattice.

Lattice cell: The lattice cell referred to as kc =
∑

i niti is given by the set of all k =
kc +

∑

i αiti with 0 ≤ αi < 1. The notion “lattice” refers to the discretization of
k-space in this context.

Derivatives of functions f(k) with respect to the components of k are done by calculating
differences on the lattice. The basis of the lattice is not necessarily an orthonormal one,
therefore co- and contravariant vector components differ. To circumvent the use of two
different sets of vector components, we introduce an orthonormal basis {ei} and give vector
components always with respect to this basis.

2.5.2 Symmetries

If the direct lattice of the crystal has a certain point group symmetry, this property also holds
for the reciprocal lattice. Physical quantities Q(k) which have the property Q(k) = Q(Sk)
for all the symmetry operations S of the given symmetry group of the reciprocal lattice can
be fully represented by giving their values only on a subset of the Nc lattice points. We call
those points the irreducible k -points and denote them by ki where i = 0, . . . , Nirr . (In the
notation of group theory [2.47], a vector ki is called a representative of star{ki} which is the
set of vectors {Ski}.)

This classification of k-space points defines a mapping which maps the triple (n1, n2, n3)
identifying a lattice point to the index i of the associated irreducible k -point ki, i =
i(n1, n2, n3).

The gap function ∆k does, in general, not have the property ∆k = ∆Sk , that is, it
does not always have the full point group symmetry (for the symmetry properties of the gap
function, refer to App. E). Therefore it cannot be represented using the concept of irreducible
k -points. We must instead either use all k -points or use only the irreducible k -points and
giving the irreducible representation according to which the gap function transforms. The
latter choice has the advantage that symmetry properties hold exactly (without numerical
errors) but the disadvantage that it does not allow for gap functions of accidentally mixed
symmetry. A further complication in this context is the choice of the primitive cell. Usually,
the gap-function is defined as a function of the angle ϕ in the kx-ky-plane of k-space. When
iterating through the k -points of the primitive cell, we calculate the angle ϕ for each of
the k -points and use ϕ to determine the value of the gap function. The k-space angles
for our choice of the primitive cell, however, all lie in an interval of length π/2. For the

19Also called the lattice or integration lattice.
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calculation of the gap function, we need angles ϕ from 0 to π. We accomplish this by first
mapping the k-space points in the primitive cell to the corresponding k-space points of the
first Brillouin zone (by adding multiples of the translation vectors qi) and then calculating
the corresponding angle ϕ.

Among other things the massf program calculates 4th rank tensors as function of fre-
quency. These tensors consist out of 34 = 81 elements and occupy a large amount of
computer memory. We can lower the requirements by considering the symmetry of the ten-
sors. In the case under consideration, the 4th rank tensors are given by a product of two 2nd
rank tensors, tijkl = gijgkl, where the 2nd rank tensor gij corresponds to the Raman vertex
or, when applying the effective mass approximation, the inverse effective mass tensor. The
4th rank tensor formed in such a way is symmetric when interchanging the first index pair
with the second one. We denote this symmetry operation by the permutation (1 3)(2 4) (see
Chap. 15 in [2.47] on the Permutation Group). In the framework of the effective mass ap-
proximation, the tensor gij is given by a second derivative and, as a consequence, symmetric
under the permutations (1 2) and (3 4). Note that this is independent of the point group of
the crystal! When investigating the group generated by former three permutations, it turns
out that the tensor tijkl only possesses 21 independent elements. Note that this group is only
a subgroup of the symmetry group of a 4th rank tensor. Considering the whole symmetry
group of the tensor would reduce the number of elements to 9 in the orthorhombic case (see
App. C).

2.5.3 The massf program

The Raman efficiency I(ω) as a function of the Raman shift ω is calculated by the program
massf, which was written in two versions, massf-fs, and massf-k, the first uses Fermi
surface integrations and the second full k-space integrations. The program uses as an input
the band structure εnk as calculated by the LMTO program [2.48] as well as the appropriate
gap function ∆k (or ∆ϕ) and calculates the density of states (DOS) NF at the Fermi surface
and as well averages

〈µ−1
ij 〉 , 〈µ−1

ij µ
−1
kl 〉

as well as
〈λ(ω)〉 , 〈µ−1

ij λ(ω)〉 , 〈µ−1
ij µ

−1
kl λ(ω)〉

for given cartesian indices i, j, k, and l and given values of the frequency ω. This chapter
serves the purpose of describing the details of the massf program.

2.5.4 Initialization and the LMTO output file

First of all we describe the initialization of the most important data structures used in massf

which will store the data contained in the input file to massf, and produced as an output
file by the LMTO program. We use the notation of the programming language C [2.49],
which for the case of arrays has the form

type a[d1] · · · [dn]

for an array ai1···in with ij = 0, . . . , dj − 1, j = 1, . . . , n. The type denotes the type of the
array which is int for ai1···in ∈ N and double for ai1···in ∈ R.
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The initialized data structures are:

int n[3]

Contains the numbers N1, N2, and N3 of points in each of the directions in k-space.

int nkp

The number Nirr of irreducible k -points.

int nband

The number Nb of energy bands.

int iqp[N1][N2][N3]

This 3-dimensional array maps the Nc points of the first Brillouin zone onto an integer
number, the number of the irreducible k -point associated to. It is the implementation
of the N 3 → N mapping defined in the last section.

double qb[3][3]

A 3 × 3 matrix containing the primitive lattice vectors qi of the reciprocal lattice.
These vectors are converted from the unit 2π/3.87 Å in the input file to the unit 1/aB.
The first index of qb corresponds to the vector components, the second one to the
index of the primitive lattice vectors. Therefore, qb[i][j] = eiqj.

double eb[Nb][Nirr]

These are the energy bands εn(k). The first index is the band index and the second
the number of the irreducible k -point. The energy bands in the input file are given
in Rydberg (Ry) units and are converted to Hartree (1 Ha = 2 Ry) units. After the
conversion, the Fermi energy is zero.

In the superconducting state, the gap function also has to be specified. This function
is used to calculate the Tsuneto-function λk(ω) on the same k-space lattice on which the
energy bands are defined. For convenience, we give the explicit form of the Tsuneto-function,
which is

Re λ̄k (ω̄) =







2

π

1√
1 − ω̄2

atan

(
ω̄√

1 − ω̄2

)

; ω̄ < 1

1

π

1√
ω̄2 − 1

log

∣
∣
∣
∣

ω̄ −
√
ω̄2 − 1

ω̄ +
√
ω̄2 − 1

∣
∣
∣
∣

; ω̄ > 1

(2.67)

for the real part, and

Im λ̄k(ω̄) =







0 ; ω̄ < 1
1√

ω̄2 − 1
; ω̄ > 1

(2.68)

for the imaginary part, where λk (ω) = 2|∆k | λ̄k (ω̄) and ω̄ = ω/(2|∆k |) in both cases.
These functions have been calculated on the discretization lattice for several frequencies

ωi = i · ωmax/(Nom − 1) with i = 0, . . . , Nom − 1 and stored in the two 4-dimensional arrays

double re tsu[N1][N2][N3][Nom]

double im tsu[N1][N2][N3][Nom] .

Here, Nom is the number of points in ω-space. For reasons related to numerical errors, a
cutoff has been used. This cutoff is related to the singularity of the Tsuneto-function at
ω = 2|∆k | and is implemented by setting the values of the Tsuneto-function for arguments ω
with |ω̄ − 1| < εω̄ to the respective values at the limits of this frequency interval.
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2.5.5 Velocity

After the initialization, massf calculates the first derivative of εnk with respect the k which
we will call the velocity, defined by

εn(k + ~δ) = εn(k) + vn(k) · ~δ +O(δ2) . (2.69)

If the primitive vectors {qi} do not form an orthonormal basis, one has to be careful when
calculating the vector magnitudes. Therefore we introduce the velocity vector components
with respect to a cartesian basis {ei} and define vn =

∑

i vniei. The differentiation on the
lattice then yields

∆εni(k) ≡ εn(k + ti) − εn(k − ti) = 2vn(k)ti (2.70)

or, if we introduce the matrix Qij = tiej,

∆εni(k) = 2tivn(k) = 2
∑

j

(tiej) · (ejvn(k)) = 2
∑

j

Qijvnj(k) (2.71)

which gives {vnj(k)} when inverted. This has to be calculated for all k -points on the
discretization lattice. Boundary conditions are determined by the translational symmetry
of the primitive cell.

The calculation of the velocity serves two purposes. First it is an intermediate step for
the calculation of the inverse effective mass, second, the inverse of its absolute magnitude
determines the local contribution of an element of the Fermi surface to the density of states
at the Fermi surface.

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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E0

E1

E3

E2
Sτ

Figure 2.14: The Fermi surface crossing a tetrahedron τ with a plane intersecting it (E0 <
0 < E1, E2, E3). The intersection has the surface area Sτ .

2.5.6 Tetrahedron integration

The Fermi surface integration is done using the tetrahedron method . This method decom-
poses each of the Nc lattice cells spanned by the vectors ti in the primitive cell into six tetra-
hedra and uses the 6Nc tetrahedra as integration cells. When performing the Fermi surface

c© 1999, Thomas Strohm, www.thomas-strohm.de



2.5. THE NUMERICAL CALCULATION: MASSF 51

integration, only tetrahedra which are crosses by the Fermi surface, have to be taken into
account. To check whether the Fermi surface of a particular electronic band passes through
a particular tetrahedron, it just has to be determined whether the energies εn(k)− εF given
by the electronic band and taken at the four tetrahedron corners have the same sign. The
Fermi surface, which is approximated by a plane inside a tetrahedron, always cuts an area
enclosed by a polygon with three or four corners out of the tetrahedron (except for uninter-
esting pathological cases of lower dimension), whose surface area can be easily determined.
This property is one of the main advantages of the tetrahedron decomposition. If we would
use the plain lattice cell as integration cell, the Fermi surface could cut a polygon with 3,
4, 5, or even 6 corners out of the integration cell. Determining the surface area of such a
polygon would unnecessarily complicate the program.

Suppose a k -dependent physical quantity p(k) has to be integrated over the Fermi sur-
face. If pj = p(kj) for some point kj on the Fermi surface in the tetrahedron j, and Sj

equals the area of the Fermi surface in the tetrahedron j, then the Fermi surface integral is
approximated by

P =
∑

j

pjSj ,

this is the method used by massf for performing Fermi surface integrals.

For the integration we finally need the surface area Sτ of that part of the Fermi sur-
face intersecting a tetrahedron τ under consideration. We linearize the bands εn(k) inside
the tetrahedron τ by using the values of the dispersion relation at the four corners of the
tetrahedron. Then, the Fermi surface defined by εn(k) = εF becomes a plane. As already
mentioned, a plane crossing a tetrahedron always cuts a flat polygon with either three or
four corners out of the tetrahedron, therefore its surface area Sτ is determined easily. The
required FS averages eventually are given by

S =
∑

τ

Sτ ; 〈λ(ω)〉 = S−1
∑

τ

λτ (ω)Sτ ;

〈µ−1
ij 〉 = S−1

∑

τ

µ−1
ij (τ)Sτ ; 〈µ−1

ij µ
−1
kl 〉 = S−1

∑

τ

µ−1
ij (τ)µ−1

kl (τ)Sτ ,
(2.72)

where µ−1
ij (τ) and λτ (ω) are the values of the inverse effective mass tensor and the Tsuneto-

function, respectively, for tetrahedron τ . The density of states at the Fermi level is given
by

NF ∼
∫

dSF

~|v(k)| or NF ∼ 1

~

∑

τ

Sτ

|v(τ)|

where v(τ) denotes the velocity at some point inside of tetrahedron τ .

2.5.7 Inverse effective mass

The calculation of the second derivatives of the bands is done in combination with the
integration and therefore in a manner different from that of the velocities.

The lattice cells each are decomposed into 6 tetrahedra (see Fig. 2.15), numbered i =
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a0

a1

a2
a3

Figure 2.15: The definition of a tetrahedron inside the integration cell denoted by kc using
four vectors ai.

0, . . . , 5.20 The corners of these tetrahedra are specified by four vectors aij, j = 0, . . . , 3:

aij =
∑

k

dijktk . (2.73)

The quantities dijk are the only vector components in this section which are not given in a
cartesian basis but in the basis of the vectors {ti}. The 4 × 6 × 3 = 72 values of dijk are
stored in the array int ind[4][6][3].

The calculation of the inverse effective mass tensor µ̂−1 is based on the formula

v(k + ~δ) = v(k) + µ̂−1(k)~δ +O(~δ2) . (2.74)

We put the three vectors tj = aj+1 − a0, j = 0 . . . 2 constituting the tetrahedron for δ. The
equation defining the inverse effective mass tensor then reads

δv(tj) ≡ v(a0 + tj) − v(a0) = µ̂−1(a0 + εtj)tj (2.75)

on the discretization lattice (0 < ε < 1). We next convert (2.75) to the cartesian basis by
inserting the unit matrix

∑

k ekek (outer product) and multiplying the equation on the right
with ei which yields

eiδv(tj) =
∑

k

eiµ̂
−1ekQjk . (2.76)

If we introduce the matrix

V̂ = (Vij) , Vij = eiδv(tj)

and invert (2.76), we obtain the equation

eiµ̂
−1ek = (V̂ Q̂T −1)ik (2.77)

20Arrays in the programming language C are always indexed from 0 on, we also use this convention here.
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for the cartesian components of the inverse effective mass tensor.
Note that each of the three equations (2.75) uses the inverse effective mass µ̂−1 at a

slightly different point in the tetrahedron. Therefore, the matrix µ̂−1 calculated using (2.77)
is not necessarily symmetric. We neglect the antisymmetric part of µ̂−1, this symmetrization
amounts to some kind of averaging of µ̂−1 inside the tetrahedron.

The data structures used for the tetrahedron integration and the calculation of the inverse
effective mass are

double qmat[3][3]

This matrix contains just the elements of the transposed of (Qij), that is, qmat[i][j] =
Qji.

double invqmat[3][3]

The components of (Qij)
T −1 are stored here. The identity

∑

j qmat[i][j] · invqmat[j][k] = δik holds.

double vmat[3][3]

These are the components of the matrix V̂ . It is vmat[i][j] = Vij.

double invmass[3][3]

This matrix corresponds to the inverse effective mass µ̂−1. To be more specific, its
cartesian components are given by invmass[i][j] = eiµ̂

−1ej.

int ind[6][4][3]

These are the integer numbers dijk specifying the 3 cartesian components of the 4
corners of each of the 6 tetrahedra inside a lattice cell. These are NOT cartesian
components, but just the numbers dijk defined in (2.73).

2.6 Experimental results

The experimental determination of absolute Raman scattering intensities is plagued by a
number of difficulties (a reason why usually “relative units” are found in the literature).
The first is related to the presence of elastically scattered light in the spectra, in particular
when nonideal sample surfaces are involved. Depending on the quality of the spectrometer
this leads to contributions extending typically, for the parameters of the present work, up
to 50 cm−1 from the center of the laser line. These contributions can be filtered out using
a premonochromator or notch filters but, in any case, Raman scattering measurements
below 50 cm−1 remain difficult. The measurements discussed here have been performed by
comparison with the known efficiency of a silicon crystal after correcting for differences in
the scattering volumes. The procedure leads to errors of about 50%.

We use for comparison with the calculation the experimental data of Krantz et al. [2.50]
in the case of Y-123, and Donovan et al. [2.43] in the case of Y-124. Our Figs. 2.16 and 2.17
are taken from these publications. In the case of Fig. 2.16 we have corrected a scale error
in the abscissa found in Ref. [2.50]. In the case of Fig. 2.17 we have calculated the A1g

component from the experimental results for the (x′x′) and (xy) polarizations.
The classification of the measured spectra according to irreducible representations of the

symmetry group of the crystal is performed with the use of the Raman tensor R̂ which is

related to the Raman efficiency through the expression I ∼ |eLR̂eS|
2
, bilinear in the Raman
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Figure 2.16: Experimental Raman scattering efficiencies for Y-123 from Ref. [2.50]. The
vertical scales are absolute Raman efficiencies, measured at T = 10 K and an exciting laser
wavelength of λ = 488 nm (Note that a scale error found in Ref. [2.50] has been corrected).
The A1g component extracted according to IA1g

= (Ixx + Iyy)/2− Ix′y′ is plotted in the lower
panel together with the quasitetragonal B1g and B2g components.
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Figure 2.17: Upper panel: experimental absolute Raman efficiencies given for the five speci-
fied polarization configurations for Y-124 from Ref. [2.43]. These data are taken at T = 10 K
with an exciting laser wavelength of λ = 514.5 nm. Lower panel: smoothed curves and the
A1g spectrum additionally extracted from the former. In both panels, consecutive offsets of
0, 1, . . . , 4 × 2.5 cm−1sr−1cm were used.
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tensor. In the calculations, the Raman tensor does not appear explicitly, the inverse effective
mass ∂2E/(∂ki∂kj) playing its role. It is important to note that the Raman efficiency, as
given by the theory (Eqs. (2.28), (2.30), and (2.52)), is bilinear in the inverse effective mass
of the Raman vertex (including the screening part!), that is, contains the same interferences
as the approach involving the Raman tensor. Note that the Tsuneto function λ is fully
symmetric. In the normal phase, the scattering kernel ν has been assumed to be the same
for all scattering channels.

In most of the measurements of the Raman efficiency in orthorhombic high-Tc super-
conductors, an A1g component is given. Strictly, this irreducible representation notation
is not appropriate to D2h but only to D4h. In orthorhombic crystals, the Raman tensor
has two Ag components (Rxx and Ryy) which correspond to the A1g (Rxx + Ryy) and B1g

(Rxx−Ryy) components of the tetragonal D4h case, and which are not distinguishable in D2h

because they transform in the same way. Nevertheless, quantities can be constructed in the
orthorhombic case which correspond to the tetragonal A1g component.

One of these is I (1) = (Ixx + Iyy)/2 − Ix′y′ from the experimental spectra. Both, Ixx

and Iyy contain A1g and B1g (D4h), and also an interference term (present only in the case of
orthorhombic D2h symmetry) which cancels when Ixx and Iyy are added. The Ix′y′ efficiency
contains B1g and A2g (D4h). If we assume that the antisymmetric component (A2g in D4h) of

the Raman tensor R̂ vanishes (i.e. Ixy = Iyx), Ix′y′ corresponds to tetragonal B1g and cancels
the B1g contribution in Ixx and Iyy. Provided that the A2g component of the Raman tensor
vanishes, I (1) corresponds to the IA1g

of the tetragonal case. Note that the antisymmetric
component (Rxy −Ryx)/2 of the Raman tensor vanishes in the inverse effective mass vertex
theory given in Sec. 2.2 because of γxy = γyx regardless of the symmetry of the crystal, and
also in the experiment in the case of tetragonal crystals but not necessarily for orthorhombic
crystals. The equality of Ixy and Iyx in the calculation is an artifact of the theory and results
from making use of the effective mass approximation.

A second possible construction for A1g is I (2) = Ix′x′ − Ixy. The Ix′x′ efficiency contains
A1g and B2g contributions. The interference term of these two contributions vanishes in
the tetragonal as well as the orthorhombic case. Both, B2g (D4h) and A2g are contained
in Ixy. But if the (antisymmetric) A2g component of the Raman tensor vanishes, I (2) also
corresponds to the IA1g

of the tetragonal case. In one of the experimental works [2.50] a
different method to extract the A1g component was used. Both of the expressions for I (1)

and I (2) contain contributions of the A2g (D4h) Raman tensor component. This component
may be present in the experiment, but not in the inverse effective mass based theory, a fact,
that has to be kept in mind when comparing the numerical results to the measurements.
Note that the Raman efficiencies in (xy) and (x′y′) polarization configurations also contain
contributions from the antisymmetric part of the Raman tensor. In view of these uncertain-
ties in A1g we mainly focus in the next section on the directly observable components of the
Raman tensor.

We conclude this section by taking up again the question of the validity of the effective
mass approximation. In the experiment, this can be checked in two ways. First, via the de-
pendence of the spectra on the laser frequency which should make it possible to distinguish
the contributions to the Raman efficiency resulting from resonant and nonresonant transi-
tions, respectively. The second way involves the measurement of the A2g component of the
inverse effective mass. If the effective mass approximation is valid, the Raman vertex should
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be symmetric (γxy = γyx), that is, the A2g (D4h) component should vanishes. A nonvanishing
A2g component of the measured scattering would cast doubts on the appropriateness of the
effective mass approximation.

2.7 Numerical results and comparison to experimental

results

In this section we present the results of the calculation of the Raman efficiency for the
Y-123 and Y-124 compounds. In both cases, the dispersion relation εn(k) was obtained
from a full LDA-LMTO calculation (in the atomic spheres approximation ASA). The gap
function ∆n(k) which was used in the calculation is a simple band-independent dx2−y2-wave
of the form ∆n(k) = ∆0 cos(2ϕ).

To carry out the numerical BZ and FS integrations, we employed the tetrahedron ap-
proach as discussed in Sect. 2.5, see also Refs. [2.51, 2.52]. The convergence of the integra-
tions was checked by using different discretization lattices. In Figs. 2.18 and 2.19, the results
of full BZ integrations for Y-123 and Y-124, respectively, are plotted. The corresponding
spectra obtained through FS integrations can be seen in Ref. [2.42], they are almost identical
to the latter ones. The Bose factor in the expression (2.30) has been omitted, hence the
results apply to zero temperature. In both figures, the Raman shift is given in units of the
gap amplitude ∆0. Since the calculated scattering efficiencies for BZ integrations, contrary
to FS integrations, are not only a function of the reduced frequency but depend also weakly
on the value of ∆0 (In the FS integration, but not in the BZ-integration, the step leading
from (2.46) to (2.47) can be performed; this makes the FS-Tsuneto-function a function of
ω/(2∆0) only), we took for the calculations ∆0 = 220 cm−1. This value of ∆0 falls in the
range of ∆0’s determined by Raman scattering and other methods. The δ-function peaks
in the Tsuneto-function have been broadened phenomenologically by introducing a finite
imaginary part Γ = 0.3∆0 of the frequency variable ω.

Figures 2.18 and 2.19 display spectra for each of the polarization configurations (yy),
(x′x′), (xx), (x′y′), and (xy), as well as the symmetry component A1g (D4h) (defined by
IA1g

= Ix′x′ − Ixy), the unscreened intensities, the screening part (2.55), and the total
intensities, equal to the difference between unscreened and screening parts. Note that the
(x′y′) configuration corresponds to the B1g (D4h) component because of the vanishing of the
A2g component in the theory.

We discuss first the results for Y-123. The A1g component (in the rest of this section
we use tetragonal notation unless explicitly stated) is subject to rather strong screening,
however its unscreened part is comparable to that of the B1g component. The relation
between the unscreened and the screened (total) spectral weight of the A1g component is
about three. Nevertheless, the shapes of the unscreened and the screened parts are the same
and, consequently, there is almost no shift in the peak position due to screening (contrary to
the results of Ref. [2.8]). The peak is located almost exactly at 2∆0. Note that there is no
antiscreening in the A1g component. The low-energy part of all A1g spectra (screened and
unscreened) is linear, as predicted by the theory.

As already mentioned, the (x′y′) component (equal to the B1g component in the nonres-
onant case) is almost four times stronger than its screened A1g counterpart. The screening
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Figure 2.18: Results of the BZ integration leading to the electronic Raman scattering effi-
ciencies for Y-123. Given in the five panels are absolute efficiencies for electronic Raman
scattering. The upper three curves are labelled using the irreducible representation (D4h)
of the Raman tensor, the lower two panels with the polarization geometry. Each of the five
panels contains the total absolute Raman efficiency according to Eq. (2.28) and (2.30) and
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Figure 2.19: Results of the Brillouin zone integration for Y-124. For details see the caption
of Fig. 2.18.
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is very small, its nonvanishing being an effect of the distorted tetragonality of the crystal.
There is, in this case, a very small amount of antiscreening in the region below 2∆0. As in
the case of the A1g component, the (x′y′) component peaks at almost exactly the 2∆0 fre-
quency shift. The low-frequency part has an αω + βω3 frequency dependence (see Sect. 2.9
and [2.28]), the linear part arising from the distorted tetragonality, that is, the fact that the
B1g inverse effective mass does not vanish at exactly the same position on the Fermi surface
as the gap function does.

The efficiency of the peak in the (xy) configuration (equal to the B2g component in the
nonresonant case) is also four or five times smaller than that of the A1g peak. The (xy)
peak is located at about 1.3∆0, as expected from the fact that in the neighborhood of the
region where the gap is large (along the kx and ky axes), the B2g component of the inverse
effective mass vanishes. Consequently, the peak is not as sharp as in the former cases and
screening vanishes since these spectra correspond to a nonsymmetric (B1g) representation
of the orthorhombic group (D2h). Note that this is only valid for the Y-123 crystal, but not
for Bi-2212 (refer to Sect. 2.9 and [2.28]).

In the A1g and (x′y′) spectra there should be a small peak at about ω = 2
√

ε2vH + ∆2
max ≈

3.9∆0 due to the van Hove singularity21 on the kx-axis near the X-point. The corresponding
structure, however, is very weak, and barely visible in Fig. 2.18. This is not unexpected for
a 3D calculation. These peaks appear strongly when 2D calculations are performed through
BZ integrations [2.24].

In general, the efficiencies in Y-124 (Fig. 2.19) are about a factor of three less than
those for its Y-123 counterpart. Moreover, the screening of the A1g component of Y-123
is much stronger than that of Y-124. This may be, at least in part, due to the additional
chain band: The (yy) component of Y-124 is less screened than the (yy) component of Y-
123. At low frequencies, we correspondingly have antiscreening even in A1g, a fact which
reveals itself as a change of sign of the inverse effective mass on the Fermi surface (see
Sec. 2.3). Due to this antiscreening, the peak in the A1g spectrum is shifted from 2∆0

towards approximately 1.6∆0. In contrast to the situation in Y-123, the Y-124 spectra show
clearly the influence of the van Hove singularity on the spectra, as a small hump (vH) located
near 2

√

ε2vH + ∆2
max ≈ 7∆0. In the A1g spectrum this hump is almost screened out whereas

in the (x′y′) spectrum it appears slightly increased by the influence of antiscreening.

To compare these predictions with the experiment let us first focus on the peak positions.
The experimental results for Y-123 (Fig. 2.16, lower part) clearly show that the position of
the (yy), (x′x′) and (xx) peaks is at about 300 cm−1, whereas the (x′y′) peak is located
at 600 cm−1, that is, at twice the frequency of the former. This fact is in sharp contrast
with the calculated spectra and has been at the center of the controversy concerning the
topic at hand [2.53, 2.54]. It has been suggested by Devereaux et al. [2.8, 2.54] that the B1g

component peaks at 2∆0, and the A1g component becomes shifted down to almost ∆0 by
the screening. This interpretation contradicts our numerical results which clearly suggest
that the influence of screening on the position of the A1g mode is usually smaller. The
frequency renormalizations of phonons around Tc also seem to contradict the interpretation

21The band-structure calculations [2.11] predict a van Hove singularity in the band structure of optimally-
doped Y-123. This saddle-point is located on the kx-axis near the X-point. Together with the fact that
the dx2−y2-like gap function has zero slope on the kx-axis, this causes a peak in the Raman efficiency (see
Subsect. 2.3.5).
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in Refs. [2.8] and [2.54]. It has been shown [2.55] that lowering the temperature of the
sample in the superconducting phase causes the A1g 435 cm−1 phonon (plane-oxygen, in-
phase) to shift up in frequency and the B1g (D4h notation) 340 cm−1 phonon (plane-oxygen,
out-of-phase) to shift down. This, in turn, implies a value of the gap parameter 2∆0 between
300 cm−1 and 360 cm−1 and is consistent with our interpretation of the electronic Raman
spectra with the A1g peak at 2∆0.

Note that the (yy), (x′x′) and (xx) spectra do not contain contributions of the A2g (D4h)
antisymmetric component of the Raman tensor while the (x′y′) component does. Hence, the
experimental results may suggest that the shift of the position of the (x′y′) spectrum with
respect to the peak position of the other spectra maybe due to resonance effects. The (xy)
spectrum is also influenced by the A2g component. It is difficult to determine its peak
position from Fig. 2.18, but it seems to be located at the same position as that of the (yy),
(x′x′) and (xx) configurations. The calculation predicts it to be located at about 1.3∆0, the
shift to 2∆0 can also be attributed to the existence of an A2g component, like in the case of
the (x′y′) configuration.

To compare the relative intensities of the spectra with different polarizations, we refer
to Table 2.2, which lists them together with the corresponding absolute intensities, both at
the peak position. The detailed results of our FS integration have already been reported
earlier [2.42]. We begin with Y-123 (upper panel in Table 2.2) and compare the BZ inte-
gration results to the experimental ones. With the possible exception of the A1g component
(and the (x′x′) component, which is very similar to the A1g counterpart), the agreement is
rather good. The deviation of the A1g component may be attributed to screening, which is
very sensitive to sign changes and other details of the Raman vertex near the Fermi surface
(such as details of the band structure and especially the exact position of the Fermi energy).

The second compound, Y-124 (lower panel in Table 2.2), also shows reasonable agreement
between the results of the BZ integration and the experiment. However, we also have
problems with the A1g component, as we did for Y-123.

The measured absolute intensities agree particularly well with the calculations in the
case of Y-123. With the exception of A1g, the discrepancy between theory and experiment
is only a factor of two, which can easily be related to the difficulties in measuring absolute
scattering cross sections. In the case of Y-124, the discrepancy is a bit larger, but a factor of
four can still be considered good. We should also keep in mind that resonances of ωL or ωS

with virtual interband transitions are expected to enhance the simple inverse effective mass
Raman vertex, a fact which could also explain why the measured scattering efficiencies are
usually larger than the calculated ones.

We close the discussion of the numerical results with a remark about the Fermi surface
integration. For Y-124, the results of the former correspond rather closely to the results
from the BZ integration. The situation is different for Y-123. Here, the (xx) peak height
is almost a factor of four larger in the FS integration than in the BZ integration. This is
likely to result from the close proximity of the van Hove singularity to the FS in the case of
Y-123 (25 meV), as compared to Y-124 (110 meV) [2.11].

To verify the predictions related to the effect of orthorhombic distortions, as discussed
in Sec. 2.3, we performed a fit of the function αω + βω3 to the low-frequency part of the
B1g data for Y-123 reported in Ref. [2.50] and Ref. [2.56] as well as for Bi-2212 (taken from
Ref. [2.57]) and to the results of our numerical calculations for Y-123. The ratios of the
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Y-123 FS integration [2.42] BZ integration Experiment [2.50]
Polarization absolute relative absolute relative absolute relative

yy 20.0 1.00 19.6 1.00 40 1.00
xx 28.0 1.40 7.2 0.37 19 0.48
xy 3.0 0.15 2.5 0.13 4 0.10
x′x′ 5.0 0.26 26 0.65
x′y′ 4.8 0.24 10.6 0.54 12 0.30
A1g 19.2 0.96 3.0 0.15 18 0.45

Y-124 FS integration [2.42] BZ integration Experiment [2.43]
Polarization absolute relative absolute relative absolute relative

yy 6.3 1.00 4.4 1.00 18.0 1.00
xx 1.5 0.24 1.4 0.32 7.2 0.40
xy 1.1 0.17 0.5 0.11 2.6 0.14
x′x′ 1.4 0.32 12.0 0.66
x′y′ 2.8 0.44 2.3 0.52 5.6 0.31
A1g 1.1 0.17 1.0 0.23 6.9 0.38

Table 2.2: Comparison of the experimental peak scattering efficiencies given in units of
10−8 cm cm−1 sr−1 to the theoretical predictions (from Fermi surface integrations, Ref. [2.42],
as well as Brillouin zone integrations, present work) for Y-123 and Y-124.

cubic vs. the linear part (at ω = 300 cm−1) of the fit to the low-frequency efficiency are
given in Table 2.3.

Both measurements for Y-123 agree in their large linear part, which should arise from the
lack of exact tetragonality, and also from the presence of impurities. The results of the BZ
integration show a smaller linear part, because they do not take into account the influence
of impurities. Finally, the result for Bi-2212 is completely different from the former results
for Y-123. The linear part almost vanishes, in agreement with the preceding discussion.

In spite of the striking ability to predict not only general features of the observed spectra
but also their peak intensities in absolute units, our calculations are not able to predict
the relative positions of the A1g and B1g peaks. According to Figs. 2.18 and 2.19 the
A1g spectrum should peak only slightly below 2∆0 while B1g should peak at 2∆0. The

HTSC cubic:linear in B1g Reference
Y-123 1 Krantz et al. [2.50]
Y-123 1 Hackl et al. [2.56]
Y-123 0.35 BZ integration
Bi-2212 0.07 Staufer et al. [2.57]

Table 2.3: The ratio between the linear and cubic parts of the low energy Raman efficiency
in B1g (D4h) configuration of several high-Tc compounds at a Raman shift of ω = 300 cm−1.
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experimental data of Figs. 2.16 and 2.17, however, indicate that the B1g spectra peak nearly
at twice the frequency of A1g. Since the observed A1g peak is considerably sharper than
that of the B1g spectrum, we may want to assign the A1g peak to 2∆0. Our calculations
show that it is impossible to reproduce both peak frequencies with a simple gap of the
form ∆0 cos 2ϕ where ϕ is the direction of the k -vector. A reasonable fit was obtained in
Ref. [2.50] with a two-dimensional FS which did not take into account the chain component
and assigned d- and s-like gaps to the two bonding and antibonding sheets of the FS of the
two planes in an ad hoc way. Within the present 3-dimensional band structure the FS cannot
be broken up into bonding and antibonding plane and chain components since such sheets
are interconnected at general points of k-space. It is nevertheless clear that there is no reason
why the gap function should be the same in the various sheets for a given k -direction. Thus
the remaining discrepancy in the peak positions between theory and experiment could be
due to a more complicated ∆nk than a simple ∆0 cos 2ϕ used here. Another possible source
of this discrepancy is scattering through additional excitations of a type not considered here
(e.g. magnetic excitations) contributing to and broadening the B1g peak.

A BCS-like theory, which involves an attractive pairing potential as well as the repulsive
Coulomb potential and postulates an anisotropic dx2−y2-like gap function in connection with
the effective mass approximation yields absolute Raman scattering efficiencies which are in
significant agreement with the experimental spectra. There is one exception, the relative
peak positions of the A1g and the B1g components. The theory predicts them to be both lo-
cated near ω = 2∆0, but the experiment shows the peak in B1g at almost twice the frequency
of the peak in A1g. The weak B2g spectrum agrees in intensity and peak position with cal-
culations for a dx2−y2-like gap. The results of other experiments, involving the temperature
dependence of phonon frequencies [2.55], suggest that the A1g peak position corresponds to
the gap amplitude 2∆0. The shifting of the B1g peak towards higher frequencies may have
an origin different from the mass-fluctuation-modified charge-density excitations described
in the theoretical part of this paper but could also be due to a multi-sheeted gap function,
more complicated than the simple dx2−y2-like ∆0 cos 2ϕ gap assumed in our calculations.
The initial variation of the A1g and B1g scattering efficiencies vs. ω are linear as expected
for that gap. The B1g symmetry becomes Ag in the presence of the orthorhombic distor-
tion related to the chains. Consequently, the scattering efficiency at low frequency is not
proportional to ω3 but should have a small linear component which is found both in the
calculated and the measured spectra. In the corresponding spectrum of Bi-2212, with and
orthorhombic distortion along (x+ y), the B1g (D4h) excitations also have a nonsymmetric
B1g (D2h) orthorhombic character. Consequently, for small ω no component linear in ω is
found in the measured spectra.

We have performed our calculations using either BZ or FS integration. In the case of
Y-124 the spectra so obtained are very similar. For Y-123 quantitative differences appear;
they are probably related to the presence of a van Hove singularity rather close to the FS.
These singularities appear as weak structures in the calculated spectra, as expected for a
3D band structure.
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2.8 Other forms for the gap function

In this section, we present the results for the electronic Raman efficiency for forms of the gap
function different from the dx2−y2-ansatz we used in the former sections. Another difference
to the treatment in the last sections is the band structure employed. Here, we use a simple
model band structure whereas in the former section, the full LDA-LMTO band structure
was used.

One simple band structure which can be inserted into the theory is an analytical expres-
sion with a small number of parameters as a model for a single-band band structure. In this
case, though, Raman scattering can occur only via the A2 vertex because virtual interband
transitions (i.e. transitions of the type |i〉 → |m〉 → |f〉 with |i〉 6= |m〉 and |m〉 6= |f〉) do not
exist in the one-band model, and therefore transition matrix elements of the operator p ·A
vanish due to its negative parity. If virtual interband transitions are not important in the
situation under consideration, the use of a single-band band structure may be an acceptable
choice. But we can do better anyhow: the band structure εk is not needed directly for the
calculation of the Raman efficiency using the expression

I(ω) ∼ 〈γ2
kλk(ω)〉 − 〈γkλk (ω)〉2

〈λk(ω)〉 (2.78)

but just in the form of the k -dependent Raman vertex. The Raman vertex, however, already
combines transitions via the A2 and p · A vertices and the modeling of the Raman vertex
by an parametrized analytical expression therefore seems to be a more clever choice than
simply modeling the electronic band structure. This conclusion, however, depends heavily
on the details of the problem to be analyzed.

2.8.1 A gap function of type s+ d

The first class of gap dependencies on ϕ that was investigated has the form of an extended
s-like function having the full A1g symmetry of the tetragonal D4h point group,

∆(ϕ) = ∆0 + ∆1 cos(4ϕ) .

We especially focused on the values of ∆0 = 0.7 and ∆1 = 1. This form for a gap function
was suggested in recent work of B. Brandow [2.58].

In the ΓX (01) and ΓY (10) directions, this gap function has a maximum value of ∆0+∆1

with the same phase (positive) in both directions. In the ΓM (11) direction, it has a value
of ∆0 − ∆1, which is negative. In between, there are two nodes (per quadrant in k-space).

Consequently, the derivative of the gap with respect to ϕ vanishes in two nonequivalent
directions, ΓX and ΓM, where it takes on different values. If the Raman vertex does not
vanish in either of these directions, the unscreened Raman efficiency has two logarithmic
singularities, at Raman shifts ∆0 + ∆1 and ∆0 − ∆1. The logarithmic singularities can be
understood as arising from critical points in the two dimensional space represented by ϕ
and dk/dE. These peaks can be identified in all spectra for A1g Raman vertices, especially
in the spectrum calculated for the (unscreened) isotropic Raman vertex γϕ = 1 in Fig. 2.20
which also shows the exact cancellation of the unscreened term by the screening term.

c© 1999, Thomas Strohm, www.thomas-strohm.de



2.9. THE S-WAVE/D-WAVE GAP RATIO. . . 65

For a slightly nonisotropic A1g vertex (Fig. 2.21) of the form γϕ = 1 + (1/2) cos(4ϕ) the
screened spectrum does no longer vanish identically. An interesting property of this case is
that the peak at higher frequency is screened more strongly than that at lower frequency:
The screened spectrum consists of a single peak at the position ∆0 − ∆1.

Raman vertices of A1g symmetry which change sign on the Fermi surface produce antis-
creening which is strongest in the frequency range of the gap function at the node position of
the Raman vertex. In Fig. 2.22 the results for an A1g vertex of the form γϕ = 1+(3/2) cos(4ϕ)
are displayed. This Raman vertex changes sign near the ΓM direction, where the gap func-
tion takes approximately the value ∆0 − ∆1. At this frequency, Fig. 2.22 shows strong
antiscreening that enhances drastically the unscreened spectrum.

Figure 2.23 shows the effect of the A1g vertex γϕ = 1 − (3/2) cos(4ϕ) which is large in
ΓM direction and small in ΓX direction. The nodes are close to the ΓX direction where the
gap function is almost ∆0 + ∆1. Exactly in this frequency range, antiscreening occurs.

In the case of a vertex with B1g symmetry (Fig. 2.24), the singularity at ∆0−∆1 appears
as an almost invisible kink, because the ΓM direction is not sampled due to the vanishing
Raman vertex. Furthermore, the low-energy spectrum is linear in the Raman shift! This
is due to the fact that the gap does not vanish in the ΓM direction, where the B1g vertex
vanishes. In the case of a d-wave gap function in tetragonal high-Tc’s, the node of the gap
function and the node of the B1g vertex coincide. This produces a low-frequency behavior
of the imaginary part of the Raman susceptibility which is cubic. This behavior has been
verified in some important cases (e.g. Bi-2212).

To summarize, the screened Raman efficiency for different choices of an A1g vertex shows
a peak at the frequency ∆0 − ∆1 and a small, strongly screened feature at the frequency
∆0 + ∆1. In the case of a B1g vertex, the situation is reversed. At the frequency ∆0 − ∆1

there is only a very tiny kink. The strong peak is located at the frequency ∆0 + ∆1.

2.9 The s-wave/d-wave gap ratio in nontetragonal

HTSC

There are two distinct ways to distort the tetragonal (D4h point group) symmetry of the
Cu-O plane of high-temperature superconductors (HTC). One way is realized in Y-123.
The presence of the Cu-O chains increases the distance of two Cu ions in the plane in
y-direction, but leaves their distance in x-direction almost unchanged (see Fig.2.25, left
panel). The initially tetragonal primitive unit cell becomes orthorhombic in this way, the
tetragonal B1g irreducible representation (IR) corresponds the the orthorhombic Ag IR.
Consider a dx2−y2-like gap function in tetragonal Y-123. The presence of the σx′ and σy′

mirror planes guarantees that the nodes of the gap function coincide with the nodes the
the B1g component (corresponding to the (x′y′) polarization) of the Raman vertex. In
orthorhombically distorted Y-123 there are no σx′ and σy′ mirror planes, and the coincidence
of the gap function nodes and the (x′y′) component of the Raman vertex is not enforced by
the point group symmetry of the crystal.

In Bi-2212 the situation is different. The tetragonal symmetry becomes broken, because
the Cu-O square in the primitive unit cell actually has sides of equal length, but the angles
deviate slightly from π/2. Therefore, the approximate square actually is a rhombohedron,
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Figure 2.20: Imaginary part of the Raman susceptibility for A1g polarization and an isotropic
Raman vertex γϕ = 1.
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Figure 2.21: As in Fig. 2.20 but with a slightly anisotropic Raman vertex γϕ = 1 +
(1/2) cos(4ϕ).
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Figure 2.22: As in Fig. 2.20 but with a very anisotropic Raman vertex γϕ = 1+(3/2) cos(4ϕ)
which changes sign on the Fermi surface close to the ΓM direction.
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Figure 2.23: As in Fig. 2.20 but with a very anisotropic Raman vertex γϕ = 1−(3/2) cos(4ϕ)
which changes sign on the Fermi surface close to the ΓX direction. Note the antiscreening
in the 0.9 to 1.7 Raman shift region.

c© 1999, Thomas Strohm, www.thomas-strohm.de



68 CHAPTER 2. ELECTRONIC RAMAN SCATTERING

 0  0.5  1  1.5  2  2.5  3

Im
. p

ar
t o

f R
am

an
 s

us
c.

 Im
 Χ

(ω
) (

a.
u.

)

Raman shift (1/∆max)

total
unscreened

screening

Figure 2.24: Imaginary part of the Raman susceptibility for B1g polarization and a d-wave
Raman vertex γϕ = cos(2ϕ).
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Figure 2.25: The two possibilities of deforming a tetragonal crystal into an orthorhombic
one in the case of high-Tc cuprates.
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which has orthorhombic symmetry. To make this obvious, we choose a symmetry-adapted
unit cell with twice the size of the primitive unit cell (see Fig.2.25, right panel). Considering
again a dx2−y2-like gap function, it is obvious that the gap nodes and the nodes of the (x′y′)
polarization related Raman vertex component coincide as required by the presence of the σx′

and σy′ mirror planes even in the orthorhombic case.
This section deals with Y-123-like orthorhombic HTSC. Due to the fact that the dx2−y2-

like wave function transforms according to the Ag (D2h) IR, like the s-wave gap function
does, both functions may mix. Therefore, and because the deviation from the tetragonal
case is small, the gap function in Y-123 should mainly be dx2−y2-like, with a small s-wave
component [2.59, 2.60, 2.61, 2.62, 2.63]. In this section, we present a method to determine
the position of the nodes of the gap function in nontetragonal high-Tc superconductors. We
write this gap function in the form

∆φ = ∆0 · [cos(2φ) + r] , (2.79)

(∆0 as well as r are assumed to be real) where φ is the polar angle in the kx-ky-plane (φ = 0
corresponds to the ΓX direction), and demonstrate how to determine the parameter r using
electronic Raman scattering together with LDA-LMTO band structure calculations [2.64].

It is well known [2.65, 2.27] that tetragonal high-Tc superconductors show a low-energy
Raman spectrum in B1g polarization configuration which is cubic in the Raman shift, that
is, I(ω) ∼ ω3. There are two principal conditions which can alter this low-frequency law,
the presence of impurities [2.32, 2.66], and an orthorhombic distortion [2.63, 2.27] like the
one present in the high-Tc superconductors (HTSC) in which the tetragonal D4h point group
symmetry is broken by the presence of the Cu-O chains. Either of the two circumstances
leads to an additional contribution to the low-frequency regime linear in the Raman shift.
This makes the low-energy spectrum acquire the form

I(ω) ∼ α
ω

ω0

+

(
ω

ω0

)3

(2.80)

with two parameters ω0 and α which can be determined from fits to the low-energy regime
of the experimental results from electronic Raman scattering [2.27]. In view of the fact that
the results do not change very much from sample to sample, at least in optimally doped
samples [2.67], we neglect impurity scattering.

According to the theory of electronic Raman scattering in anisotropic superconduc-
tors [2.65, 2.27, 2.68] the scattering efficiency in B1g polarization at T = 0 is given by
the Fermi surface (FS) average

I(ω) ∼ 〈γ2
B1g

(φ)λFS(φ, ω)〉 , (2.81)

in which the influence of impurities has been neglected. Here γB1g
(φ) denotes the B1g

component of the inverse effective mass and λFS(φ, ω) is the imaginary part of the Tsuneto-
function which for ω > 2|∆φ| is given by

λFS(φ, ω) ∼ |∆φ|2

ω
√

ω2 − 4|∆φ|2
. (2.82)
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and vanishes for ω < 2|∆φ|. Note that in general I(ω) is given by a Brillouin zone (BZ)
average. However, under the reasonable assumption that γk and ∆k do not change much
close and perpendicular to the FS, the average over the BZ can be reduced to the FS average
of Eq. (2.81).

At this point we introduce another angular variable ϕ defined as ϕ = φ − φ0 where φ0

is the position of the node of the gap function in the ΓX-ΓY quadrant and corresponds to
the ΓM direction in tetragonal systems. From inspection of the Tsuneto-function, it is clear
that the Raman response at a certain Raman shift ω arises from those regions on the Fermi
surface where twice the gap is smaller than ω. Therefore, in the calculation of the low-energy
Raman efficiency (ω � 2∆0), we only have to take into consideration those regions of the
FS which are close to the gap nodes. We shall focus our attention on one of these gap
nodes and, later on, treat the other three gap nodes by using symmetry arguments. The
vanishing of the gap function at ϕ = 0 allows us to approximate it by ∆(ϕ) = ∆1ϕ. We
treat the inverse effective mass γ also in a linear approximation, γB1g

(ϕ) = γ0 + γ1ϕ, γ0

being the value of γ(ϕ) ≡ γB1g
(ϕ) at the position ϕ = 0 of the gap node, and γ1 its slope.

This approximation allows us to analytically evaluate the FS-average in Eq. (2.81) in the
low-frequency regime. The result is given by the expression

I(ω) ∼ α1ω + α2ω
2 + α3ω

3 (2.83)

with the coefficients

α1 =
π

2

γ2
0

8∆1
, α2 = C

γ0γ1

8∆2
1

, α3 =
3π

8

γ2
1

32∆3
1

. (2.84)

The proportionality constant C in the equation for α2 actually vanishes in our linear ap-
proximation for ∆(ϕ) and γ(ϕ). In an exact calculation, this constant would also be zero
if we include all nodes of the gap function in the 0 < ϕ < 2π domain: the D2h symmetry
operations σx and σy can be used to map the other three nodes on the first one. Upon appli-
cation of the σx or σy symmetry operations, the constant γ1 changes sign. As a result, the
total quadratic contribution in Eq. (2.83) vanishes and the final result is given by Eq. (2.83)
with α2 = 0 and α1, α3 given by Eq. (2.84).

To determine the ratio γ0/γ1 at the gap node, we compare these results with the exper-
imental values of α and ω0 determined with Eq. (2.80) and obtain the relation

α =
α1ω0

α3ω3
0

=
4

3

(
2∆1

ω0

)2

·
(
γ0

γ1

)2

, (2.85)

which expresses the fact that the position of a node of the gap function and the ratio of the
value and the first derivative of γ(φ) at that position are related. Furthermore, the latter
ratio is related to that of the linear and cubic parts in the low-energy electronic Raman spec-
trum in B1g polarization. Note that Eq. (2.85) also works for tetragonal superconductors:
For Bi-2212, there is no linear contribution [2.63] in the low-energy part of the electronic
Raman spectrum, therefore α = 0, and Eq. (2.85) yields γ0 = 0. This means that the nodes
of the gap function and the node of the B1g component of the inverse effective mass γ are
at the same position.

The presence of impurities also may give rise to a linear part in the low-energy electronic
Raman spectrum [2.32, 2.66]. This leads to an overestimate of the parameter α in Eq. (2.80)
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and, according to Eq. (2.85), to an underestimate of γ0/γ1 at the gap node. While this fact
should be kept in mind when we extract the parameter r, we have given arguments that
suggest that impurity effects can be neglected.

The availability of the LDA-LMTO band structure allows us to calculate the inverse
effective mass γ(φ) and, therefore, γ(φ)/γ ′(φ) as a function of φ. This enables us to localize
the point ϕ0 on the Fermi surface, where γ(φ)/γ ′(φ) assumes the value γ0/γ1. This is the
position of the gap node and, thus, yields the value of r in Eq. (2.79).

In the next few paragraphs, we shall give an example of the use of the method outlined
above to evaluate r. It turns out that sometimes we find more than one solution for the
position of the gap node in the ΓX-ΓY quadrant. Within the framework of this method, no
further information on which of the two values is the correct one is available.

In the case of YBa2Cu3O7 a further complication arises: the existence of two Cu-O
plane bands (we call them a and b, antibonding and bonding with respect to inversion)
which are both superconducting. Each of these bands defines a sheet of the FS. Therefore,
we have two different inverse effective masses γa(φ) and γb(φ) as well as two different gap

functions ∆
(a)
φ and ∆

(b)
φ and, as a consequence, two different Tsuneto-functions λa(φ, ω) and

λb(φ, ω). The fact that the Fermi sheets of the two plane bands are rather close in k-space

implies ∆
(a)
φ ≈ ∆

(b)
φ , as well as λa(ω) ≈ λb(ω), and therefore

〈γ2
aλa〉 + 〈γ2

bλb〉 ≈ 〈(γ2
a + γ2

b )λ〉 (2.86)

holds. Hence, the one-band expression in Eq. (2.83) is still valid if we replace γ2
0 by γ2

a,0 +γ2
b,0

and γ0γ1 by γa,0γa,1 + γb,0γb,1. Note that we neglect a possible influence of a nonvanishing
gap function in the strongly orthorhombic Cu-O chains on the Raman efficiency and a term
which is due to the mixing of the bands [2.69].

From the experimental electronic Raman spectrum inB1g polarization for YBa2Cu3O7 [2.70]
in Fig. 2.26 we determined a coefficient α = 1 at ω0 = 300 cm−1. Furthermore, the LDA-
LMTO band structure yields the functions γa,B1g

(φ) and γb,B1g
(φ) which are plotted in

Fig. 2.27 together with the function

Λ(φ) =

∣
∣
∣
∣

γ2
a,0 + γ2

b,0

γa,0γa,1 + γb,0γb,1

∣
∣
∣
∣
. (2.87)

Note that the kx-ky-plane angle φ denotes φ = arctan(ky/kx) and φ = 0 is given by the ΓX
direction. For the slope ∆1 of the gap function ∆ϕ at its node, we take the value ∆1 =
450 cm−1rad−1, which is supported by several experiments [2.65]. According to Eq. (2.85),
these values for α, ω0 and ∆1 require the functions Λ(φ) to take on the value 0.3 at the
position φ0 of the gap node, which leads to (see Fig. 2.27)

φ0 = 0.57 rad = 33◦ and r = −0.42 (2.88)

or
φ0 = 0.68 rad = 39◦ and r = −0.21 (2.89)

as a second possibility.
Note that the function Λ(φ) in Fig. 2.27 has a local minimum in the region between 0.3

and 1 rad with a value of 0.06. If the gap node were at the position of this minimum, the
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linear part in the low-energy spectrum would vanish. The value of 0.06 corresponds to a
value of α = 0.04 at ω0 = 300 cm−1. This value can be higher in an experiment due to the
presence of impurities. The band structure calculation yields α = 0.04 as a lower bound for
the linear part in the electronic Raman spectrum.

A second remark concerns the reliability of the LDA-LMTO band structure. It is believed
that this band structure is reasonable in the vicinity of the Fermi surface. A more serious
problem may be resonance effects changing the nonresonant inverse effective mass vertex
used here. They could, of course, be included in the calculation with additional computa-
tional work. However, consideration of these has not been necessary for the semiquantitative
interpretation of absolute scattering intensities [2.27, 2.71].

We summarize: in this section, we have presented a method to determine the position
of the nodes of the gap function for nontetragonal high-Tc superconductors using inverse
effective masses obtained from LMTO band structure calculations and the Raman efficiency
at low energies. The method has been applied to the case of YBa2Cu3O7 for which a result
is given.
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Figure 2.26: Linear and cubic part of the low-energy region of the B1g scattering efficiency
for Y-123 from the experiment [2.70].
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Figure 2.27: Inverse effective masses for the Cu-O plane bands on the Fermi surface around
the ΓM direction for Y-123 from a LDA-LMTO calculation [2.27].
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2.10 Extensions and other aspects of the theory

2.10.1 A comment on vertex renormalizations

Manske et al. presented in Ref. [2.21] a calculation of electronic Raman scattering in clean
d-wave superconductors in which the B1g electronic Raman response is affected by electronic
screening. They claimed that this screening suffices to explain drastic differences between
experiments and previous calculations. We show that these differences remain after errors
in Ref. [2.21] are corrected.

In Ref. [2.21], Manske et al. propose a modified theory for the explanation of the electronic
Raman scattering in clean d-wave high-Tc superconductors for incoming and scattered light
wave vectors perpendicular to the CuO planes. Their Fermi-liquid-like theory is based on
a simple t-t′ model band structure. It involves a renormalization of the Raman vertex γk

by a pairing interaction V (k , k ′) and a short-range interaction Uq (in Ref. [2.21], Uq is
taken as independent of q, otherwise their Eq. (6) is wrong) in a ladder approximation,
and additionally by the short-range interaction Uq in RPA. An expression for the Raman
response function is obtained and it is claimed that for certain values of the parameters
of the model band structure, it reproduces the measured Raman spectra in YBa2Cu3O7

(Y-123).
Here, we want to point out some mistakes in Ref. [2.21], which invalidate the conclusions

and also make some comments concerning the proposed theory.
(1) The expression for the A1g component of the Raman vertex γA1g

given in Eq. (5) of
Ref. [2.21] is clearly not fully symmetric with respect to the D4h point group and therefore
incorrect (actually, it has “A1g +B2g” symmetry). The correct expression is

γ
A1g

k ∝ t[cos(kx) + cos(ky) − 4B cos(kx) cos(ky)] . (2.90)

instead of
γ

A1g

k ∝ t[cos(kx) cos(ky) − 4B cos(kx) cos(ky)] . (2.91)

The wrong expression for this vertex was used together with Eq. (11) of Ref. [2.21] to
calculate the Raman response function χA1g

(ω). Consequently, the computed A1g spectrum
shown as solid line in their Fig. 3 must also be incorrect. Using the same parameters
for the band structure as in Ref. [2.21], we repeated the calculation of ImχA1g

with the
correct vertex (2.90) and obtained the result given in our Fig. 2.28, which is by almost two
orders of magnitude smaller than that given in Ref. [2.21]. Even the unscreened part (i.e.,
2 Im〈γ2

A1g
∆2

k 〉 in the notation used by Manske et al.) is one order of magnitude smaller than
the fully screened one of Ref. [2.21]. Note that also the peak position of the A1g spectrum
now corresponds almost to the peak position of the B1g Raman spectrum. Therefore, the
difference in the peak position of the A1g and B1g Raman spectra is not explained by the
Ansatz of Manske et al. nor is the ratio of the peak strenghts.

We also plotted in Fig. 2.28 the B2g component of the Raman spectrum which is almost
identical to the wrong A1g Raman spectrum. This is due to the fact that the wrong Raman
vertex is equal to γA1g + γB2g and that the magnitude of the A1g Raman spectrum is much
smaller than that of the B2g Raman spectrum. The result that the peak in the B2g spectrum
occurs at a lower Raman shift than that in the B1g spectrum is simply due to the fact that
the B2g Raman vertex vanishes in k-space directions where the gap function ∆k has its
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maxima. The small magnitudes of both screened and unscreened A1g spectra in Fig. 2.28
result from the fortuitously small values of the Raman vertex of Eq. (1) on the Fermi surface
as illustrated in Fig. 2.29. Note that the B1g Raman spectrum in Fig. 2.28 does not exhibit
a strictly cubic low-energy behavior. This is due to the fact that we are using a broadened
(but still causal) Tsuneto-function in the numerical integration of the Brillouin zone averages
and has little influence on the Raman spectra at energies comparable to the gap amplitude
or larger.

(2) The band structure parameters used for the calculation of the Raman response in
Ref. [2.21] are also questionable. They correspond to a filling of 1.2 electrons per plane
band and unit cell. Band structure calculations and ARPES measurements [2.72] suggest
the filling to be in the range from 0.6 to 0.8 electrons per plane band and unit cell.

(3) It is important also to include in the theory the renormalization of the Raman vertex
by the pairing interaction V (k , k ′) in the RPA-like term (last term in Eq. (6) and last
diagram in Fig. 1 of Ref. [2.21]). The fact that the interaction Uq is of short-range implies
that the contribution of the pairing interaction to the RPA-like term is of the same order of
magnitude as the contribution of the short-range interaction Uq. If a long-range interaction
of the Coulomb-type were involved, taking into account the pairing interaction V (k , k ′)
would not be necessary because the Coulomb interaction is much more important than the
pairing interaction in the q → 0 limit.

(4) The expression for the B1g component of the Raman response given in Eq. (12)
of Ref. [2.21] already was given in Ref. [2.25], Eq. (C23), with the only exception that in
Ref. [2.21] the interaction V in the B1g channel is expressed by Tsuneto-function weighted
Brillouin zone averages of combinations of the quasiparticle energies εk and the gap func-
tion ∆k .

In conclusion, the theory given by Manske et al., if correctly formulated, does not explain
the anomalies observed in the electronic Raman spectra of d-wave superconductors.
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Figure 2.28: Imaginary part of the Raman response for different polarization configurations.
The thin solid, long-dashed, and dot-dashed lines are our results for the A1g, B1g, and B2g

irreducible representations, respectively. The thick solid line corresponds to the Raman
spectrum calculated with the wrong Raman vertex γA1g
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line is the result for the unscreened A1g Raman spectrum and the dotted line corresponds
to the screening part contained in the result for B1g.
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Figure 2.29: Irreducible components of the Raman vertex on the Fermi surface as a function
of the angle in the first quadrant of the Brillouin zone.

c© 1999, Thomas Strohm, www.thomas-strohm.de



Chapter 3

Phonon Raman scattering

3.1 Introduction

The presence of electron-phonon coupling in systems which possess electron-hole excitations
and phononic excitations introduces two new physical processes: (i) the electronic Raman
efficiency is changed as a consequence of the new decay channel for electron-hole pairs
to recombine via the creation of a phonon, and (ii) the indirect coupling of light to the
phonons via an intermediate electron-hole excitation gives rise to phonon Raman scattering .
The chapter at hand serves the purpose of reviewing and investigating these effects.

An implication of the very large magnitude of the speed of light in comparison to the
Fermi velocity is that an electron-hole pair, which was created by inelastic scattering of
light, has zero total quasimomentum. One of the constituents of the electron-hole pair may
scatter and thereby create a phonon. This process has a nonvanishing amplitude only if
the electron-hole pair resulting from the scattering process may recombine later via the
creation of light. This implies the vanishing of the quasimomentum of the phonons which
participate in the electron-phonon coupling. The phonons which have to be considered when
discussing Raman scattering in the presence of electron-phonon coupling have a vanishing
quasimomentum, that is, are Γ-point phonons.

The system to be considered for the discussion of Raman scattering consists of a contin-
uous spectrum of electron-hole excitations and one (or a small number of) discrete phonon
excitation (the Γ-point phonon). The physical effects of the coupling of a discrete excitation
to a continuous excitation spectrum has been studied first by Fano [3.1] in the context of
energy loss spectroscopy where the discrete levels of an atom are involved in the discrete
excitation, and by Anderson [3.2] (see also [3.3], Chap. 4.2) who discussed the coupling of
a single impurity state to a continuous spectrum of electron-hole excitations. Although the
physics of phonon Raman scattering is obviously different from the absorption by atomic
levels, the effect of the coupling of a continuous spectrum of electron-hole excitations to a
discrete phonon excitation is called the Fano effect in the framework of the theory of Ra-
man scattering. We will go further and call the theory of electronic Raman scattering, after
extending it to include the Fano effect, the Fano theory .

The general theory of Raman scattering is described in a very comprehensive manner
by Enderlein and coworkers [3.4], an application to insulators is described by Mills and
Burstein [3.5]. The formulation of the theory of Raman scattering using the temperature-
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dependent diagram technique has been given by Kawabata [3.6]. In the context of isotropic
superconductivity, the Raman efficiency is calculated by Klein and Dierker [3.7].

A recent treatment of the Fano effect in the light of Feynman diagrams was presented
by Belitsky and coworkers [3.8]. Itai [3.9] discusses the Fano effect in presence of impurity
scattering.

In Sect. 3.2 the definition and interpretation of the Raman vertex is reviewed. Then
the electron-phonon vertex and the photon-phonon vertex are introduced and discussed.
The Green’s function for the electronic excitations and the phonons are defined and the
basic polarization loop is reviewed. The Fano theory with certain simplifying assumptions
is given in Sect. 3.3, and its different contributions are explained. In Sect. 3.4 we generalize
this theory and introduce the concept of a renormalized phonon intensity which is used in
the interpretation of the experiment presented in Sect. 3.5. Also, the concepts of anharmonic
decay and the Eliashberg-functions, which are playing an important role in the theory of
superconductivity, are introduced. Finally, in Sect. 3.5, which is the central section in this
chapter, we describe a Raman scattering experiment and try to understand it by means of
the theory presented in the other sections of this chapter.

The material presented in Sect. 3.5, and concerning the Raman scattering experiment,
is based on a publication by Hadjiev and coworkers [3.10].

3.2 The photon-phonon vertex and other

prerequisities

In App. A we have shown how a coupling of electronic excitations to phonons arises. A
consequence of this coupling is that phonons are “seen” in electronic Raman scattering.
The discrete phonon excitation which is involved in Raman scattering is interfering with
the electron-hole continuum. For the sake of giving later an elementary theory of the Fano
effect , we will recall the properties of the vertices which are important in this theory.

Raman vertex. The Raman vertex γk (shown in Fig. 3.1) describes the transition
amplitude for the inelastic scattering of light by creating a pair-excitation1 in the electron
system of the specimen under consideration. This process is described by the diagram in
Fig. 3.1. The Raman vertex (2.17) corresponds to a second rank tensor since it must be
contracted with the electric field vector of the incident and the scattered light. It also
depends on the vector k characterizing the electronic pair-excitation. Due to the fact that
the velocity of light is much larger than typical Fermi velocities, the total quasimomentum q

transferred to the solid in the scattering process is approximately zero (it is two or three
orders of magnitude less than the k -vector at the BZ boundary). As was already shown in
Chap. 2, the Raman vertex (2.16) is the result of summing two different diagrams (Figs. 2.2
and 2.3), both second order in light, describing inelastic scattering of light on an electron
system. The Raman vertex shows a dependence on the light frequency ωL which may be in
resonance with electronic pair-excitations for some values of ωL.

Electron-phonon vertex. The coupling of electrons to phonons is quantified by
the electron-phonon vertex gk describing the process of the destruction of a phonon by
creating an electronic pair-excitation or vice versa and is illustrated in Fig. 3.2. If the

1Only electronic pair excitations are of interest here, because the particle number has to be conserved.
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Figure 3.1: The Raman vertex γk for scattering by electronic excitations. Incoming and
scattered light have the frequencies ωL and ωS as well as the polarizations eL and eS,
respectively.

total quasimomentum q of the electronic pair-excitation is zero, this is also the case for the
phonon, and therefore we will restrict to Γ-point phonons.2

The electron-phonon vertex is a k -dependent scalar. 3 In general, it also has a phonon
branch index, but here and in most of the following material we will consider only nonde-
generate optical phonons.

Γ
k

k
Figure 3.2: The electron-phonon vertex gk .

Photon-phonon vertex. Phonon Raman scattering can be repesented by the photon-
phonon vertex Tp which describes the transition amplitude for inelastic light scattering
by creating a phonon. One possible mechanism for this process is the coupling of the
electric fields of the light waves to the ionic charges in an ionic crystal. When devel-
oping a theory for this process, one would start with the Hamiltonian of the ion sys-
tem coupled to the electromagnetic field. The kinetic part of this operator is given by
(1/2Mion)

∑

i (Pi + (qion/c)A(Ri))
2, where the sum runs over all ions in the lattice, Ri

and Pi are the position and momentum operators, respectively, of ion i, and for simplic-
ity all the ions are assumed to have the same mass Mion and charge qion. The vertex
which describes the direct photon-phonon coupling originates from the term HAp,ion =
(qion/cMion)

∑

i PiA(Ri) which has to be taken in second order perturbation theory and
then leads to processes in which the inelastic scattering of light creates a pair of phonons
(shown in Fig. 3.3(a)). We will not consider this process further, because it is quadratic in

2Actually some care is needed here. If we talk of Γ-point phonons it is always meant q → 0, but q 6= 0.
For q = 0, the acoustical phonon degenerates into static strain which does not contribute to the dynamics
of the electron-phonon system.

3If there is no degeneracy. Otherwise it will be a quantity which transforms according to a certain
irreducible representation of the crystal point group.
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eL Lω eS ωS

q
−q

eL Lω Γ

(a) (b)
Figure 3.3: (a) Direct inelastic light scattering by phonons, and (b) light absorption by
phonons.

the phonon, and expected to be small because the large ionic mass appears in the denomi-
nator.

A process which leads to inelastic scattering of light and the creation of one phonon is
shown in Fig. 3.4. It involves the creation and destruction of an electronic pair-excitation.
This is the basic diagram for phonon Raman scattering.

In optical absorption, the creation of a phonon in conjunction with the absorption of a
photon is described by HAp,ion in first order perturbation theory. Usually (if not forbidden by
selection rules) the diagram in Fig. 3.3(b) is the dominant process leading to light absorption
via a phonon.

From the diagram in Fig. 3.4 it is clear that phonon Raman scattering is sensitive only to
even-parity phonons (we consider a crystal with an inversion center), because the incoming
and scattered photon have the same parity. Raman scattering is sensitive to even Γ-point
phonons only . In optical absorption this is different. From Fig. 3.3(b) we infer that the
involved Γ-point phonons have to have odd parity, because the photons do so. Considering
the coupling which is proportional to the dipol momentum of the optical Γ-point phonon,
and noticing that even-parity phonons have a vanishing dipol momentum yields to the same
result.

Electronic Raman scattering and phonon Raman scattering are of quite different nature.
In electronic Raman scattering, the Raman shift (i.e. the difference between the energy of
the incoming laser light ωL and the energy of the scattered light ωS) corresponds directly to
the energy of the electron-hole excitation created in the scattering process. In an intrinsic
semiconductor with a gap energy Eg and at T = 0, the electronic Raman spectrum will vanish
from 0 to Eg Raman shift (except for excitons). For phonons, this is different. The first step
in phonon Raman scattering (Fig. 3.4) is the creation of a virtual electron-hole pair with
an energy of εe−h and a transition amplitude which is proportional to (εe−h − ωL)−1. Then
the scattering of the hole (electron) while creating a phonon with energy ωΓ, which changes
the energy of the electron-hole excitation to ε′e−h, and possesses a transition amplitude
proportional to ε′e−h + ωΓ − ωL. Eventually, the virtual electron-hole pair is destroyed, the
transition amplitude for this is proportional to ε′e−h − ωS. The process is important close
to the resonance, that is, the electron-hole excitations which are mainly involved in phonon
Raman scattering have an energy of approximately the photon energy ωL. They are not
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directly related to the electron-hole excitations which are responsible for electronic Raman
scattering at energies close to the energy of the phonon.

Note that for a scaling AL → αAL of the laser light amplitude, the photon-phonon
vertex scales as Tp → α2Tp just as the Raman vertex does. This is due to the occurrence of
the two A · p vertices in the diagram in Fig. 3.4.

Like the Raman tensor, the photon-phonon vertex corresponds to a second rank tensor
(we again only consider the case of no phonon degeneracy). But as a contrast, it is not
dependent on k . When evaluating the diagram in Fig. 3.4, the k -dependence is integrated
out. The diagram in Fig. 3.5 is not a contribution to the photon-phonon vertex but will
turn out to be just a part of the renormalization of the electronic Raman vertex.

To prevent from falling into the trap of identifying the coupling constants V in the
processes given by the diagrams in Figs. 3.4 and 3.5, respectively, we note that usually these
electron-phonon matrix elements V involve completely different electronic states. In Fig. 3.4
it involves either only occupied or occupied states and in Fig. 3.4 an electron-hole excitation.

eL eS

Γk k

k
Lω ωS

Figure 3.4: The photon-phonon vertex Tp involving an electronic pair-excitation is given by
this diagram.

eS

eL Lω

ωS k

k

Γ

Figure 3.5: This is not a contribution to the photon-phonon vertex Tp but to the renormal-
ization of the Raman vertex γk .

The bare Green’s functions. The elementary excitations in the Fano process are
the electronic pair-excitation continuum and the discrete phonon excitation (the Γ-point
phonon). Electronic pair-excitations appear in the Fano theory as polarization loops, the
most general one (Fig. 3.6) describes the creation of an electron-hole pair via a vertex akq ,
the electron having an energy ν + ω (~ = 1 here) and quasimomentum k + q and the hole
having energy −ν and quasimomentum k .4 The electron-hole pair then is destroyed via a

4In the formalism applied here (see Sect. 2.8 in [3.3]), electron and holes have the same dispersion
relation εk . The Green’s functions, however, distinguishes between electrons and holes: it has a pole in
the lower half of the complex frequency plane for εk > εF (electrons), and in the upper half for εk < εF
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ν+ω,k+q

ν,k

a b

Figure 3.6: The basic polarization loop.

vertex bkq . The Green’s function5 of the electron is given by

G(k , ω) =
1

ω − εk + iδk
, δk = δ · sign(εk − εF ) (3.1)

and the Feynman diagram (called polarization loop) in Fig. 3.6 translates to the expression

χ
(0)
to,ab(q , ω) = 2i

∫

dν
∑

k

akqb
∗
kqG(k + q , ν + ω)G(k , ν) . (3.2)

The function χ
(0)
to,ab(q , ω) is called a susceptibility .6 In the Fano theory, electron-hole pairs

are always created by light via the Raman vertex or by a phonon via the electron-phonon
vertex. In the first case, the quasimomentum q of the pair vanishes. In the second case q

also vanishes, because the phonon itself was either created by an electron-hole excitation or
by inelastic light scattering. Therefore we are interested only in pair-excitations or phonons
at the Γ-point, that is, with q ≈ 0. The polarization loop then reads

χ
(0)
to,ab(ω) =

∫

dν
∑

k

akb
∗
kG(k , ν + ω)G(k , ν) .

If the Fano theory we will introduce a further simplification by assuming that the vertices
are independent of k . Consequently the susceptibility acquires the form

χ
(0)
to,ab(ω) = ab∗

∑

k

G(k , ν + ω)G(k , ν) ≡ ab∗χto,0(ω) , (3.3)

(holes). A consequence is the vanishing of the frequency integral in the expression for the polarization
loop if k and k + q are both either below or above the Fermi energy. Nonvanishing contributions to the
polarization loop only arise if one of the two particles is above and the other below the Fermi surface. In
this case, the difference εk+q − εk appears as excitation energy when performing the frequency integration.
As a conclusion, we label both electron lines in the polarization loop with frequency and quasimomentum
of electrons, not holes, and take into account the particle number conservation by two arrows pointing in
opposite direction.

5These are time-ordered Green’s functions for which the diagrammatic perturbation expansion is valid.
We only employ them in the calculation of the polarization loop. For all other purposes we make use of the
retarded Green’s functions, because they also obey a Dyson equation and are directly related to observable
quantities. The retarded Green’s functions fulfill the Kramers-Kronig relations. For a time-ordered Green’s
function G(ω) and a retarded Green’s function Gret (ω), the relations ImG(ω) = sign(ω) ImGret(ω) and
ReG(ω) = ReGret(ω) are valid.

6More specific, it is a time-ordered susceptibility (hence the subscript to), because the Green’s function
used to define it is time-ordered as well. The second subscript ab refers to the vertices, and the superscript (0)
indicates that it is a bare, i.e., not renormalized, susceptibility.
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and can be expressed by the function χto,0(ω) which is defined by (3.3) and can be interpreted
as the Green’s function of an electron-hole pair (or electronic susceptibility) because it’s
imaginary part is proportional to the density of electron-hole excitations. The retarded
susceptibilities χ

(0)
ab (ω) and χ0(ω) corresponding to the time-ordered susceptibilities χ

(0)
to,ab(ω)

and χto,0(ω), respectively, shall be used extensively in the Fano theory. We introduce their
real and imaginary parts of χ0(ω) in the form

ρ(ω) = − 1

π
Imχ0(ω) and R(ω) = Reχ0(ω) .

The imaginary part ρ(ω) of −(1/π)χ0(ω) is a spectral density function for the electron-hole
excitations and the real part R(ω) is connected with ρ(ω) via a Kramers-Kronig relation,
because χ0(ω) is analytic in the upper half plane of the complex frequency ω.

The screening of the polarization loop by electrons can easily be incorporated in the
present formalism by using the same method as in Chap. 8 and replacing the susceptibilities χ
by the corresponding screened susceptibilities χ/ε.

The phonon excitation is taken to be an optical phonon close to the Γ-point with a (bare)
frequency of ωp,0. Its Green’s function7 is given by

D0(ω) =
1

ω − ωp,0 + iδ
− 1

ω + ωp,0 + iδ
=

2ωp,0

ω2 − ω2
p,0 + iδ sign(ω)

.

We have included phonons with negative frequency (“traveling in negative time direction”)
in the Green’s function D0(ω). They are necessary if we are interested in frequencies much
less than the bare phonon frequency ωp,0 and also because the relation D0(−ω) = D∗

0(ω) has
to be fulfilled. If these things are not of importance, the approximation

D0(ω) =
1

ω − ωp,0 + iδ
(3.4)

may be used.8

The Fano theory renormalizes the Raman susceptibility χRaman (ω) by multiplying it
with a functional of the phonon Green’s function D0(ω), the vertices Te, Tp, and V , and
the polarization loop χ0(ω), see (3.10). This renormalization should not alter the property
of χRaman (ω) with respect to the transformation ω → −ω and this is guaranteed if D0(−ω) =
D∗

0(ω).

3.3 Elementary Fano theory

After the preparations and definitions introduced in the last section, we are well armed
to tackle the problem of giving a first elementary version of the Fano theory. The notion

7This is the retarded phonon Green’s function for T = 0. We are not going to use the time-ordered Green’s
function because all the renormalizations are done with the Dyson equation and this equation is valid for the
time-ordered and the retarded Green’s function as well. In Sect. 3.4.6 we renormalize the electron and this
would require the time-ordered phonon Green’s function, but there we employ the imaginary-time Green’s
function.

8The reader may have the impression that we are somehow picky about the behavior of the Green’s func-
tions upon the transformation ω → −ω. But the importance of this property should not be underestimated,
especially not when calculating the real part of a Green’s function from its imaginary part (or vice versa)
by means of a Kramers-Kronig transformation.
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elementary Fano theory is coined by the request for maximum simplicity while still showing
the physical principles of the Fano effect.

3.3.1 The different contributions

Renormalizing the electronic Raman efficiency. Now we are prepared to give an
elementary Fano theory. As already announced, our elementary Fano theory will neglect the
k -dependence of the vertices, we write in the following the k -independent vertices as

γk → Te , gk → V

and also treat all vertices Te, V , and Tp as real quantities. In the next section, this restriction
will be removed.

First of all, we recall the theory of electronic Raman scattering [3.7, 3.6]. In this theory,
the Raman efficiency I(ω) is proportional to the imaginary part of the Raman susceptibility
χRaman (ω),9 which, in the easiest case of vanishing screening and a k -independent Raman
vertex Te, is given by the electron-hole susceptibility χ0(ω) with total quasimomentum q = 0
(Fig. 3.7(a)) multiplied by the square of the vertex,

χRaman(ω) = T 2
e χ0(ω) .

Taking into consideration the electron-phonon coupling processes described in the last para-
graphs an electron-hole excitation can be destroyed by creating a phonon. Processes of
this kind give rise to an infinite amount of contributions to the electronic Raman scatter-
ing shown in Fig. 3.7(b), and consequently renormalize the Raman susceptibility. We call
the electronic Raman susceptibility renormalized by electron-phonon interactions the Fano
susceptibility χFano , illustrated by

χRaman

el-p coupling−−−−−−−−−−−→χFano .

All these different contributions constitute a geometric series and, therefore, can be
summed up (Fig. 3.8). We define the renormalized phonon Green’s function D(ω)

D = D0 +D0V χ0V D0 +D0V χ0V D0V χ0V D0 + · · ·

dropping the frequency-dependence of the Green’s functions in this and the subsequent
equations whenever convenient.10 The summation yields the phonon Dyson equation

D−1(ω) = D−1
0 (ω) − V 2χ0(ω) . (3.5)

As a consequence, the renormalized electronic Raman scattering is described by the sum of
the Green’s functions χ

(0)
el (ω) and χ

(1)
el (ω) shown in Fig. 3.9. The sum of the diagrams (a)

9Actually, the Raman efficiency I(ω) is a 4th rank tensor, because it is proportional to the square of the
Raman vertex γk , which is a 2nd rank tensor and has to be multiplied with the polarization vectors eL and eS

of the incoming and the scattered light, respectively. In the discussion at hand, we fixed the polarization
vectors, and therefore the Raman efficiency appears as a scalar.

10This equation tells us that the combination V 2χ0D0 is dimensionless. Green’s functions always have
the unit 1/eV, consequently the vertices have the unit eV.
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Figure 3.7: (a) The diagram describing bare electronic Raman scattering, and (b) the first
two diagrams out of an infinite series which results in the renormalization of the electronic
Raman scattering by electron-phonon interaction. The photon lines which correspond to
the incoming and scattered light, respectively, have been omitted (cf. Fig. 2.6).
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Figure 3.8: Renormalizing the phonon Green’s function by electron-phonon interaction.
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Figure 3.9: The different contributions to the Fano susceptibility. Panel (a) represents the
bare electronic Raman susceptibility which is equal to the Fano susceptibility in the limit of
vanishing electron-phonon coupling. Panel (b) depicts the renormalization of the electronic
Raman susceptibility by electron-phonon interaction. Show in panel (c) is the contribution
from phonon Raman scattering to the Fano susceptibility. The black-box vertices are an
abbreviation for the photon-phonon vertex as shown in Fig. 3.4 with omitted photon lines.
Finally, panel (d) depicts the contributions which result from the interference of electronic
and phonon Raman scattering.

and (b) in Fig. 3.9 is equivalent to the sum of all diagrams in Fig. 3.7, therefore the sum of
the Green’s functions is given by

χel(ω) ≡ χ
(0)
el (ω) + χ

(1)
el (ω)

= T 2
e (χ0 + χ0V DV χ0) =

T 2
e

|D|−2

(
χ0|D|−2 + V 2χ2

0D
∗−1
)
.

If we now use the Dyson equation (3.5) of the renormalized phonon, we get the expression

χel =
T 2

e

|D|−2

{

χ0

∣
∣D−1

0 − V 2χ0

∣
∣2 + V 2χ2

0

(
D−1

0 − V 2χ∗
0

)}

.

The two terms proportional to V 4 in this expression drop out. Considering the fact that
D−1

0 = ω − ωp,0 is real,11 and taking the imaginary part of the expression, the two terms
proportional to V 2 also cancel, and we are left with

Imχel = T 2
e Imχ0 ·

D−2
0

|D|−2 = ImχRaman · D
−2
0

|D|−2 .

The renormalization of the Raman susceptibility by the electron-phonon interaction there-
fore is given by multiplying it with the absolute square of the ratio of renormalized phonon

11We just adhere to the definition of the bare phonon Green’s function. The limit δ → 0 in (3.4) implies
that D−1

0 is real. This is not true, however, for D0.
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Green’s function to bare phonon Green’s function. Expressing this ratio with bare quantities
by using the phonon Dyson equation and the approximation (3.4) yields

Imχel(ω) = −πT 2
e ρ(ω) · (ω − ωp,0)

2

[ω − ωp,0 − V 2R(ω)]2 + [πV 2ρ(ω)]2
. (3.6)

For large frequencies (higher than these of typical electron-hole excitations), the Green’s
function χ0 vanishes as ω−1. Therefore, the ratio D−2

0 /|D|−2 becomes one in this limit
and the renormalization of the electronic Raman efficiency vanishes. The quotient in (3.6)
should be even with respect to ω → −ω and it is if the exact result for D0 instead of the
approximation (3.4) is used. Therefore, (3.6) transforms like Imχ0(ω) for ω → −ω.

To gain further insight in the renormalization expressed by (3.6), we assume that R(ω) ≈
R0 and ρ(ω) ≈ ρ0 are constant in the region of interest. We introduce the renormalized
phonon frequency ωp and the linewidth Γp (HWHM) by

ωp ≡ ωp,0 + V 2R0 and Γp ≡ πV 2ρ0 (3.7)

and write
D−2

0

|D|−2 =
(ω − ωp,0)

2

(ω − ωp)2 + Γ2
p

which shows a peak at about the renormalized phonon frequency ωp and a zero, called
antiresonance, at the bare phonon frequency ωp,0 (see Fig. 3.10). It is clear, that the peak
of Imχel is only approximately located at ωp because of the frequency dependence of the
numerator of (3.6).

Direct phonon Raman scattering. The fact that in addition to the process given
in Fig. 3.1 and described by the Raman vertex, inelastic scattering of light also occurs via
the diagram in Fig. 3.4 gives rise to further contributions to Raman scattering. The first of
these is the direct phonon Raman scattering described by the Green’s function depicted in
Fig. 3.9(c) and denoted by χphon(ω). It is given by12

Imχphon = T 2
p ImD = T 2

p

1

|D|−2 Im
(
D∗−1

)

which by again taking into consideration the phonon Dyson equation (3.5) takes the form

Imχphon = T 2
e Imχ0(ω) ·

(
TpV
Te

)2

|D|−2 (3.8)

and consists of the electronic Raman efficiency multiplied by a Lorentzian centered at the
renormalized phonon frequency ωp = ωp,0 + V 2R0 and having a width πV 2ρ0. The con-
tribution (3.8) appears to be independent of Te, but the Raman vertex is hidden in the
photon-phonon vertex Tp defined in Fig. 3.4.

Interference terms. In addition to the contributions already treated, there are inter-
ference terms between electronic and phonon Raman scattering. The two interference terms,
whose diagrams are depicted in Fig. 3.9(d), are denoted by χintf and can be written as

ImχIntf = 2TeV Tp Im(χ0D) =
2TeV Tp

|D|−2 Im
(
χ0D

∗−1
)
,

12The spectral function of the phonon is given by −π−1 ImDret(ω).
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1

ωp ωa

Raman shift ω

Figure 3.10: The function D−2
0 /|D|−2 which when multiplied by the imaginary part of the

electronic Raman susceptibility in absence of electron-phonon interaction yields the imagi-
nary part of the electronic Raman susceptibility in presence of electron-phonon interaction.
Note that the maximum and the renormalized phonon frequency ωp do not correspond.

Using the phonon Dyson equation (3.5), they can be transformed into

ImχIntf = T 2
e Imχ0(ω) ·

2TpV
Te
D−1

0

|D|−2 . (3.9)

Similarly to the term χel , this interference term shows a peak at the renormalized phonon
frequency ωp and an antiresonance at the bare phonon frequency ωp,0.

3.3.2 The Fano result

Summing up all the contributions (3.6), (3.8), and (3.9) to the Fano susceptibility χFano ≡
χel +χphon +χintf , we arrive to the result of renormalizing the electronic Raman susceptibility
by introducing electron-phonon coupling,

ImχFano = T 2
e Imχ0 ·

(

D−1
0 + TpV

Te

)2

[
D−1

0 − V 2 Reχ0

]2
+ [V 2 Imχ0]

2
. (3.10)

This expression is called the Fano-Breit-Wigner equation. It contains all contributions to
Raman scattering in a system of coupled electrons and a phonon.

For vanishing electron-phonon coupling V = 0 the quotient in (3.10) becomes 1 and we
recover the known formula for electronic Raman scattering. For vanishing photon-phonon
coupling Tp = 0, the result (3.6) is recovered, therefore phonons are seen in the Raman
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spectra even if they do not couple via Tp to light. The absence of electronic pair exci-
tations makes ImχFano to vanish completely. This is not trivial to see in the formalism,
because ImχFano contains the phonon-part Imχphon = |Tp|2 ImD, and for ρ(ω) ≡ 0 the
spectral density ImD will be a δ-function, in the experiment somehow broadened. But
nevertheless Imχphon vanishes for ρ(ω) ≡ 0 because the vertex Tp defined by the diagram in
Fig. 3.4 does.

The usual parametrization. In the literature [3.11], the Fano formula (3.10) is
usually presented in terms of the parameters q and ε and reads

I(ω) = Iel(ω)
|q + ε|2
1 + ε2

. (3.11)

Comparing to (3.10), the parameters13 ε and q can be related to the microscopic parameters
as

q(ω) =

TpV
Te

+ V 2R(ω)

πV 2ρ(ω)
=
ωp − ωa

Γp

ε(ω) =
ω − ωp,0 − V 2R(ω)

πV 2ρ(ω)
=
ω − ωp

Γp

(3.12)

For the case of frequency-independent functions R(ω) and ρ(ω) (this is actually the case
when the parametrization (3.11) makes sense), the variable ε represents the frequency in
reduced units, having the property that ε = 0 for ω = ωp,0. The parameter q, called the
Fano asymmetry parameter, gives the approximate distance between the antiresonance and
the position of the maximum, in units of the phonon linewidth Γp. For small values of q,
the antiresonance is very close to the position of the peak (in comparison to the phonon
linewidth Γp). For large values of q, the numerator of (3.11) is almost constant around ωp,
and the phonon peak is almost Lorentzian.

In the discussion of the limit V → 0 we will take R(ω) = R0 and ρ(ω) = ρ0. Then
q = O(1/V ), and ε = O(1/V 2), therefore in this limit q/ε → 0, and |q + ε|2/(1 + ε2) → 1.
For vanishing electron-phonon coupling, the quotient in (3.10) becomes one.

Location of the peak. An important topic in this context is the location of the
phonon peak . For a bare Green’s function χ0 which does not vary too much in a region
of width Γp around the renormalized phonon frequency14 ωp, the location of the phonon
peak can be defined by the requirement that the first derivative of ImχFano vanishes. If we
use the approximation (3.4) and the notation ωa = ωp,0 − TpV/Te for the location of the
antiresonance and Iel = T 2

e Imχ0 for the bare electronic Raman efficiency, the imaginary
part of the Fano susceptibility χFano is given by

Iel
(ω − ωa)

2

(ω − ωp)2 + Γ2
p

(3.13)

whose first derivative has to vanish. This is fulfilled for the two frequencies

ω = ω̃p ≡ ωp −
Γ2

p

ωa − ωp
and ω = ωa ,

13Usually, in (3.12) the functions R(ω) and ρ(ω) are taken to be constant (at least closed to ωp). Then,
q becomes a constant, and ε a (dimensionless) variable.

14This is a nonlinear condition because ωp is determined by an equation which contains the Green’s
function χ0!
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the first of these expressions given is the location of the phonon peak. If the conditions

∣
∣
∣
∣

Γ2
p

ωa − ωp

∣
∣
∣
∣
� Γp or ρ0 �

∣
∣
∣
∣

Tp

TeV
+R0

∣
∣
∣
∣

or q � 1

are fulfilled, the position of the peak ω̃p can be identified with the renormalized phonon
frequency ωp.

For a nonconstant Green’s function χ0, the situation is much more complicated. In this
case we just discuss the location of the minima of the expression [D−1

0 − V 2 Reχ0]
2 in the

denominator of the Fano formula (3.10). The minima are determined by

D−1
0 (ωm) = V 2R(ωm) .

Using again the approximation (3.4) for D0, this is equivalent to

ωm − ωp,0 = V 2R(ωm) (3.14)

which may have more than one solution for ωm. We consider an electron-hole spectral
density ρ(ω) which is Lorentzian around ωe ≈ ωp,0 as shown in Fig. 3.11. The real part R(ω)
crosses the line V −2(ω − ωp,0) at three points, the minima ωm. The Fano function shows
indeed two peaks at the leftmost and rightmost of the minima. At the minimum in the
middle, there is no peak because the term [πV 2ρ(ω)]2 in the denominator of the Fano formula
very large, therefore the third peak can be considered to be extremely broad (overdamped).
This examination clearly shows that the position of the peak(s) in the Raman spectra
produced by the existence of a phonon are not necessarily closely related to the renormalized
phonon frequency ωp. Note that the example under consideration is somehow contrived
because the coupling matrix element V used is very large and the number of electrons
coupling to the phonon is very small. This is why the electronic peak at ωe in Fig. 3.11 is
washed out as a result of the coupling to the phonons.

Relaxing the approximation (3.4) shows that the linear function ω−ωp,0 in (3.14) should
be replaced by the parabola (ω2 − ω2

p,0)/2ωp,0 which is centered around ω = 0 and has a
slope of 1 at the ω = ωp,0 node, and therefore this case is similar to the previous one.

Discussion of the different contributions. Now we are prepared to discuss the dif-
ferent contributions to the Fano efficiency which are plotted in Fig.3.12. In this figure, the
bare electronic Raman susceptibility was set equal to 1. The renormalized electronic contri-
bution χel approaches 1 for |ω − ωp| � Γp and vanishes quadratically with the frequency ω
at ω = ωp,0, the bare phonon frequency. Furthermore, the contribution coming from the
renormalized phonon is just a Lorentzian with a width of Γp and centered around ω = ωp.
The interference contribution χintf vanishes linearly with frequency at ω = ωp,0 where the
electronic contribution also vanishes. Finally, the sum χFano of all these contributions van-
ishes at the antiresonance ωa. At this frequency the electronic and phonon contributions
are exactly the same and are cancelled by the interference term meaning that the electronic
and phonon contributions are out of phase at the antiresonance.

Complex vertices. Let us turn to the discussion of how complex15 vertices would
change our result (3.10) for the Fano formula obtained so far. The important point here

15A real number is also a complex number. But here we refer to nonreal complex numbers.
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0

ωp,0 ωe

Raman shift ω

2*Im χ0(ω)
Re χ0(ω)

(ω-ωp,0)/V2

Im χFano(ω)

Figure 3.11: Determining the position of the peaks predicted by the Fano formula.

0

1

ωm ωpω0 ωa

Raman shift ω

Im χel
Im χphon
Im χintf

Im χFano

Figure 3.12: The different contributions to χFano(ω) as a function of frequency ω.
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shall be illustrated for the case of the electron-phonon vertex V describing the process of
creating an electron-hole pair while destroying a phonon. The magnitude of the transition
amplitude for this process is the same as for the conjugated (or time-reversed) process, that
is the creation of a phonon by recombination of an electron-hole pair while the phase of V
is complex conjugated for the conjugated process. The transition amplitude of the first is
given by V , that of the second by V ∗ (see Fig. 3.13(a)) as explained in Chap. 9. Let us now
revise the derivation of the Fano formula in that light.

V *

Γ
k

k k

k
Γ

V
Figure 3.13: The creation of an electron-hole pair by destroying a phonon and the time-
reversed process.

In the contributions Fig. 3.9(a) and (b), the Raman vertex occurs in complex conjugated
pairs. This is also the case for the vertex Tp in the diagram Fig. 3.9(c). The two electron-
phonon vertices in Fig. 3.9(b) are conjugated as well, therefore leaving a factor |V |2. This
is also the case for the renormalized phonon (see Fig. 3.8). As a consequence the vertices in
the contributions χel and χphon only occur in the combinations |Te|2, |Tp|2, and |V |2. In the
interference contribution Fig. 3.9(d), the vertices in the first diagrams are TeV

∗T ∗
p and in

the second part the complex conjugated vertices (TeV
∗T ∗

p )∗. The combination of these two

terms occurring in χintf is therefore 2|Te|2 Re(TpV/Te). Adding again the three contributions
as in (3.10) shows that the square in the numerator in the Fano formula has to be replaced
by an absolute square |· · ·|2. As a conclusion, the vertex squares in the Fano formula (3.10)
as well as the numerator (· · ·)2 both should be interpreted as absolute squares, but the
combination TpV/Te is to be interpreted as complex now. This has the consequence that the
frequency ωa of the antiresonance is no longer real: the Fano efficiency at the antiresonance
does no longer vanish.

Complex vertices and a noninteracting background. For the purpose of fitting the
Fano formula to experimental spectra, the consideration of the possibility of complex vertices
augments the number of fitting parameters by 2 phases, making the fitting process much
more difficult. We show subsequently that under the assumption of a constant electron-hole
susceptibility χ0 the introduction of complex vertices in the theory just amounts to an addi-
tional constant noninteracting background in the spectra accompanied by a renormalization
of the parameters in the Fano formula [3.12].

For a constant χ0(ω) we write the Fano formula in the form (3.13) where ωa = ω′
a + iω′′

a

becomes complex. Then we introduce a Fano formula with renormalized parameters Ĩ0, ω̃a,
ω̃p, and Γ̃p plus a constant background Ĩb, the renormalized position of the antiresonance ω̃a
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now being a real quantity, and equate both forms:

Ĩ0
(ω − ω̃a)

2

(ω − ω̃p)2 + Γ̃2
p

+ Ĩb = I0
|ω − ω′

a − iω′′
a |2

(ω − ωp)2 + Γ2
p

,

with two sets of five parameters on each side of the equation. Multiplying the equation by
the two denominators leads to an equation of two polynomials of fourth order in ω allowing
for the determination of 5 relations and, consequently of one set of parameters as a function
of the other set, in the form

(Ĩ0, ω̃p, Γ̃p, ω̃a, Ĩb) = f(I0, ωp,Γp, ω
′
a, ω

′′
a) .

This proves the assertion and gives a method to substitute a constant background by a
complex combination TpV/Te of vertices. We stress again that the requirement that the real
and imaginary part of the function V 2χ0(ω) have to be constants for the statement above
to hold. Strictly this is not possible because χ0(ω) is an analytic function in the upper half
plane of the complex frequency plane.

Determining Fano parameters from the experiment; Fitting issues. We start
with the Fano formula

I(ω) = α · (ω − ωa)
2

(ω − ωp)2 + Γ2
p

(3.15)

whose parameters α, ωa, ωp, and Γp are determined by fitting (3.15) to the experimental
spectra. Usually Raman intensities are determined in arbitrary units in the experiment,
therefore α is a scaling constant without physical meaning.

If the density ρ(ω) of electron-hole excitations is known in the system under considera-
tion, the absolute value of the electron-phonon vertex can already be determined by using
Γp = |V |2ρ(ω = ωp). A Kramers-Kronig transformation gives us R(ω) and, correspondingly,
the bare phonon frequency ω0

p = ωp − |V |2R(ωp). The absolute value of the vertex prod-
uct TpV/Te is then calculated from ωa = ω0

p + TpV/Te, and the quotient of the vertices |Te|
and |Tp| is given by dividing that by |V |. Note that |Te| and |Tp| individually cannot be
determined if the experiment only gives the Raman intensity up to an unknown constant.

3.4 More sophisticated concepts

In Subsect. 3.4.1 we motivate the definition of the integrated phonon-intensity . A phonon
broadening mechanism which is often as important as the one made possible by electron-
phonon coupling, the anharmonic decay , is discussed in the Subsects. 3.4.2 and 3.4.3.

An effective phonon-phonon interaction plays a role in the explanation of our experiment
and is introduced in Subsect. 3.4.4. In Subsect. 3.4.5 we discuss how the formalism presented
here can be applied to the case of optical absorption, and finally, in Subsect. 3.4.6, the
renormalization of the electron by the presence of the electron-phonon interaction leads to
the definition of the Eliashberg-function.

3.4.1 Final states and the renormalized phonon intensity

To quantify the effect of electron-phonon coupling on the phonon, we define a renormal-
ized phonon intensity . Within the formalism used so far, which comprises the diagrams in
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Fig. 3.9, it is not a priori clear how to do this. The integrated intensity of the bare phonon
could be defined by its spectral weight , that is

I0
p = − 1

π
T 2

p

∫ ∞

0

dω ImD0(ω) = T 2
p , (3.16)

but then the question arises of how to generalize this expression to the case of nonvanishing
electron-phonon interaction. Let us focus again on Fig. 3.9. Taking into consideration
diagram (c) and substituting D for D0 in (3.16) does not yield the desired result, because
the renormalization of the phonon in (3.16) does not change its integrated spectral weight.

Another possibility would be to take the Fano result χFano and just subtract the bare
electron-hole susceptibility χ0. Even this method—as straightforward as it seems—does not
yield the desired result.

An appropriate classification of the contributions to χFano into an electronic and a phonon
contribution requires the introduction of the final-state formalism. To introduce this for-
malism, we first note the identity

Im(AB · · ·Y Z) = Im(A)(B · · ·Y Z)∗ + A Im(B)(· · ·Y Z)∗+

+ · · ·+
+ AB · · · Im(Y )Z∗ + AB · · ·Y Im(Z)

for the imaginary part of products of complex numbers. As we are always interested in the
imaginary part of susceptibilities, and the individual diagrams contributing to the suscep-
tibilities are products of complex-valued Green’s functions, we shall apply latter identity.
The second order contribution to the phonon renormalization then is written as (assuming
real vertices)

Im(D0V χ0V D0) = V 2[Im(D0)χ0
∗D∗

0 +D0 Im(χ0)D
∗
0 +D0χ0 Im(D0)]

and plotted in Fig. 3.14(a). We agree to denote the imaginary part of a Green’s function
by a vertical line through the diagram. Then the rule for calculating the imaginary part of
some diagram is as follows. Take the sum of all possibilities drawing vertical lines through
the individual components of a diagram. A diagram with a vertical line is translated into an
equation by putting the complex conjugated Green’s function to the left of the vertical line,
the imaginary part of the Green’s function for the part of the diagram cut by the vertical
line, and the plain Green’s function for the diagram parts to the left of the vertical line.

Now we have a method at hand to classify the contributions to the imaginary part of the
Fano susceptibility into contributions with electron-hole final states and contributions with
a renormalized phonon as final state. Latter contributions are given by Fig. 3.14(b) whose
imaginary part is

Imχrp(ω) = Tp Im(D)T ∗
p + [Tp Im(D)V χ0

∗T ∗
e + c.c.]

+ Teχ0V
∗ Im(D)V χ0

∗T ∗
e

= |Tp + TeV
∗χ0(ω)|2 ImD(ω) .

(3.17)

The total intensity of the renormalized phonon is given by the integral over Imχrp(ω).
The main contribution to this integral comes from the region around ωp, the renormalized
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Im [ ] =

+ +
(a)

(b) + + +

Figure 3.14: (a) a final-state diagram, and (b) the contributions with a renormalized phonon
as final state.

phonon frequency. Therefore we approximate the prefactor of ImD in (3.17) by its value at
the renormalized phonon position ωp. The frequency integration over ImD(ω) yields −π,
therefore we have

Ip = − 1

π

∫

dω Imχrp(ω) ≈ |Tp + TeV
∗χ0(ωp)|2 (3.18)

which reduces to (3.16) for V = 0. The change of the phonon intensity by coupling it to
electron-hole excitations is given by

Ip/I
0
p ≈

∣
∣
∣
∣
1 +

TeV
∗

Tp
χ0(ωp)

∣
∣
∣
∣

2

.

Using the parameter q = q(ωp) and Iel = Iel(ωp) as defined in (3.12), as well as the notation
introduced in (3.7), the phonon intensity can be written in the form

Ip ≈ πIel [q + 1]2 Γp (3.19)

in which all parameters can be determined from the experiment.

3.4.2 Another phonon broadening mechanism: Anharmonic de-
cay

In the next section we will discuss the temperature-dependence of the linewidth of phonons.
We have seen in Sect. 3.3 that one effect causing the phonon to acquire a finite linewidth is
the possibility of decaying into electron-hole excitations due to the presence of the electron-
phonon interaction. In real systems, there is another important decay mechanism for
phonons: the decay into two phonons [3.13, 3.14] that we discuss next.

We denote (see Fig. 3.15) the cartesian component i of the displacement of the ion located
in the crystal at the position Rlα =

∑
liti + dα (ti are the translation vectors of the crystal

and dα is the position of the ion α in a cell with respect to the cell origin) by ui(lα). Terms
of the ion-ion interaction potential in third and higher order in ui(lα) have been neglected
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Rlα

l1, l3l2, )(

d2

u( l,α)

(2)

(3)

(1)

Figure 3.15: The notation used in the discussion of the anharmonic decay. The ion denoted
by (2) is displaced from its equilibrium position to a new position (dotted circle). The
vector l refers to the unit cell of the ion whereas the index α counts the individual ions in
the unit cell.

in the harmonic approximation. Taking into consideration these third order terms adds a
contribution of the form

∑

lαi

∑

mβj

∑

nγk

Φijk

(
l

α

m

β

n

γ

)

· ui(lα)uj(mβ)uk(nγ)

to the harmonic Hamiltonian, where Φijk is the potential describing the effective ion-ion
interactions in the crystal. Transforming this contribution to normal coordinates and in-
troducing the same phonon creation and destruction operators akλ and a+

kλ as used in the
harmonic approximation transforms this term into

∑

kλ

∑

k ′λ′

∑

k ′′λ′′

V3

(
λ

k

λ′

k ′
λ′′

k ′′

)

(akλ + a+
−kλ)(ak ′λ′ + a+

−k ′λ′)(ak ′′λ′′ + a+
−k ′′λ′′) (3.20)

where the matrix V3 is related to Φ and does not vanish only if k + k ′ + k ′′ = 0, modulo a
reciprocal lattice vector.

The decay of a phonon into two phonons is caused by terms in (3.10) of the form a+a+a,
consisting of two creation and one destruction operators in the Hamiltonian. Because of the
fact that this decay only exists if terms beyond the harmonic ones are taken into account in
the Hamiltonian, it is called anharmonic decay .

Diagramatics. In the perturbational calculation of the contributions of the anharmonic
decay to the phonon self-energy, the third-order contribution (3.20) has to be taken in second
order of the matrix element V3 (which is sixth order in the ion displacement), see Fig. 3.16(a).
Therefore, the contribution of fourth order (in the ion displacement) to the linewidth could
be as important as the third order term in Fig. 3.16(a). However, the fourth order term of
Fig. 3.16(b) contributes only to the phonon lineshift, but not to the phonon linewidth. We
focus consequently on the contribution in Fig. 3.16(a).
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νi m ; q ; µ

ωi n ; k ; λ’

ωi n νi m+ ; k+q; λ

(a) (b)

Figure 3.16: Two contributions to the phonon self-energy arising from anharmonic ion-ion
interaction terms in the Hamiltonian.

We use the temperature-dependent Matsubara-technique to evaluate the temperature-
dependence of the linewidth that follows from the diagram in Fig. 3.16. Using this technique,
the phonon self-energy is given by

Πµ(q , iνm) =
1

Ω

∑

k

∑

λ,λ′

V 2
3

(
µ

q

∣
∣
∣
∣

λ

k + q

∣
∣
∣
∣

λ′

−k

)

×

×
(

− 1

β

)
∑

iωn

D
(0)
λ (k + q , iωn + iνm)D

(0)
λ′ (−k ,−iωn)

=
1

Ω

∑

k

∑

λ,λ′

V 2
3

(
µ

q

∣
∣
∣
∣

λ

k + q

∣
∣
∣
∣

λ′

−k

)

× πλλ′

µ (q , iνm; k) .

(3.21)

We introduce the expression

D
(0)
λ (q , iωn) =

1

iωn − ωλ
q

− 1

iωn + ωλ
q

=
∑

ε=±1

ε

iωn − εωλ
q

(3.22)

for the temperature-dependent phonon Green’s function. The function πλλ′

µ defined in (3.21)
becomes

πλλ′

µ (q , iνm; k) =
∑

εε′

(

− 1

β

)
∑

iωn

[

ε

iωn + iνm − εωλ
k+q

· ε′

−iωn − ε′ωλ′

−k

]

. (3.23)

We perform the iωn-summation by converting the sum of (3.23) into an integral and the inte-
gral via the Poisson sum formula into a sum over residua. Noting that nB(−iνm + εωλ

k+q ) =

nB(εωλ
k+q ) because iνm is a bosonic Matsubara-frequency, and that nB(ω)+nB(−ω)+1 = 0,

we obtain

πλλ′

µ (q , iνm; k) =
[

nB(ωλ′

−k) − nB(ωλ
k+q)

]
[

1

iνm − (ωλ′

−k − ωλ
k+q )

+ c.c

]

+

+
[

1 + nB(ωλ′

−k ) + nB(ωλ
k+q)

]
[

1

iνm − (ωλ′

−k + ωλ
k+q )

+ c.c

] (3.24)
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Replacing this into (3.21) we find the desired result for the phonon self-energy contribution
of the diagram in Fig. 3.16(a).

The four terms in (3.24) arise from the fact that both phonon Green’s functions in the
diagram (Fig. 3.16(a)) have two poles each at ±ωλ

k (for a phonon with quasimomentum k

and of branch λ). This is necessary for the symmetry D(−ω) = D∗(ω) of the phonon Green’s
functions to hold.

As appropriate to Raman scattering we consider an optical Γ-point phonon ωµ
Γ, that is,

q = 0, decaying into two phonons ωλ
k and ωλ′

−k . The first two terms in (3.24) contribute
to the linewidth of the Γ-point phonon ωµ

Γ if ωµ
Γ =

∣
∣ωλ

k − ωλ′

−k

∣
∣. The thermal prefactor

nB(ωλ
k ) − nB(ωλ′

−k) is usually very small and allows us to neglect the corresponding terms if
T � TDebye .

The second summand in (3.24) describes the main contribution to the phonon linewidth
by anharmonic decay. This summand becomes important if the relation

ωµ
Γ = ωλ

k + ωλ′

−k (3.25)

is fulfilled. If the two phonons resulting from the decay are from the same branch, the
equation (3.25) can be written as

ωµ
Γ = 2ωλ

k ,

where we have made use of the relation ωλ
−k = ωλ

k .
Within this scenario, the contribution to the linewidth arising from (3.24) is proportional

to 1 + 2nB(ωλ
k ) = 1 + 2nB(ωµ

Γ/2). We thus write the temperature dependent linewidth as

Γanh(T ) = [1 + nB(ωp/2)] · Γanh(0) . (3.26)

We are going to use this formula in the upcoming discussion of experimentally measured
spectra in Hg-1234.

3.4.3 Fano effect and other self-energy contributions

Let us again pick up the topic of Subsect. 3.4.1. What influence do additional phonon decay
mechanisms have on Eq. (3.19)? We consider a specific example: the anharmonic decay of
the phonon. The renormalized phonon Green’s function is given by the Dyson equation

D−1 = D−1
0 − V 2χ0 − U2χ2p

where U is the vertex for the anharmonic decay of one phonon into two phonons and χ2p is
the polarization loop with 2 phonons. The imaginary part of χ2p is basically the 2-phonon
density of states.

This yields a phonon spectral function

− 1

π
ImD(ω) =

− 1

π

V 2 Imχ0(ω) + U2 Imχ2p(ω)

(ω − ω0
p − V 2 Reχ0 − U2 Reχ2p)2 + (V 2 Imχ0 + U2 Imχ2p)2

.
(3.27)

Defining the renormalized phonon frequency ωp by the (nonlinear) condition

ω0
p − V 2 Reχ0(ωp) − U2 Reχ2p(ωp) = ωp
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and introducing the symbols
Γep = −V 2 Imχ0(ωp)

Γanh = −U2 Imχ2p(ωp)

Γ = Γep + Γanh

∆ = ωp − ω0
p

(3.28)

allows us to write

− 1

π
ImD(ω) =

Γ/π

(ω − ω0
p − ∆)2 + Γ2

.

Substituting this in (3.17) and taking into consideration that
∫

ImD = −π we see that (3.18)
remains valid with the quantities Γp and q in (3.19) interpreted as arising from electron-
phonon coupling only.

3.4.4 Phonon-phonon interferences mediated by electronic exci-
tations

High-temperature superconductors have complex structures with about ten or more atoms
per primitive cell. Therefore they possess a considerable number of optical phonons. The
system Y-123 has 13 atoms per unit cell and, correspondingly, 3·13−3 = 36 optical phonons,
15 of them are even with respect to the inversion center (e.g. at the site of the Y atom), 4
out of these 15 Raman active phonons are of A1g (D4h) symmetry and are visible in the A1g

electronic Raman spectra. In the Hg-1234 A1g spectra there are 2 very intense phonons
seen in the region from 200 cm−1 to 400 cm−1. They are close to each other in energy.
One is tempted to use the simple Fano theory given in the last section to describe both
phonons and use a parametrized form of the Raman efficiency for describing the spectra.
Call Ip,1 (ω) and Ip,2 (ω) the Fano intensities for Raman scattering involving one phonon
with a frequencies ω1 and ω2, respectively. These intensities each contain a phonon plus the
electronic background. For describing the two phonons, one could add both intensities and
subtract from this one electronic background Iel(ω), writing

I2−p(ω) ≈ Ip,1 (ω) + Ip,2 (ω) − Iel(ω) . (3.29)

This attempt fails in the interesting case of 2 phonons which are coupled strongly to the
electronic background and which are close to each other in terms of frequency. For such
situation, the function I2−p(ω) is plotted in Fig. 3.17 and shows a negative intensity in
some frequency regions. It is clear that a two-phonon fitting formula produced using the
prescription above and employing it for fitting parameters from the experimental data is
doomed to fail.

Where do the negative intensities come from? The recipe for determining I2−p(ω) above
does not work, because it omits important interference contributions coming into the game
when considering two different phonons. A typical representative of the class of contributions
to the scattering cross section omitted is given by the diagram in Fig. 3.18. It describes the
destruction of a phonon 1 accompanied by a polarization of the electronic system, in other
words the creation of an electron-hole excitation, and the subsequent recombination of the
electron-hole excitation connected with the creation of a phonon 2. This process is virtual
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In

te
ns

ity

Raman shift ω

Ip,1(ω)
Ip,2(ω)

Ip,1(ω)+Ip,2(ω)-Iel(ω)
I2-p(ω)

Figure 3.17: The intensity Ip,1 (Ip,2) results from coupling a phonon with frequency ω1 (ω2)
to a continuum of electron-hole excitations. The curve denoted by Ip,1 (ω)+ Ip,2 (ω)− Iel (ω)
shows the approximation (3.29) to the 2-phonon Raman efficiency. The correct expression
for the 2-phonon Raman efficiency is denoted by I2−p(ω) and given by (3.32).

1 2

Figure 3.18: A typical diagram describing phonon-phonon coupling via the electronic con-
tinuum.
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as long as the phonons are not degenerate, but still gives an important contribution to the
scattering intensity I2−p(ω).

In the following paragraph we give a generalization of the Fano theory to the case in
which 2 phonons are present diagram in Fig. 3.18 is important. Like in the elementary
Fano theory, we assume that the vertices are real scalar quantities, independent of k . The
frequencies and electron-phonon matrix elements of the two phonons will be denoted by ω1

and ω2, V1 and V2.
The derivation of the Fano formula in Sect. 3.3 was based on the renormalization of

the discrete phonon by interaction with the continuum of electronic excitations. Because
of practical considerations this time we are going to renormalize the electron-hole Green’s
function χ0. This is done by summing all the diagrams in Fig. 3.7 without the vertices Te at
either end of each diagram. With respect to phonon lines we have to take all combinations
possible with the two phonons present in the system under consideration. The second order
phonon diagram (Fig. 3.7(b), bottom) therefore becomes a total of four diagrams. It is clear
that the renormalized pair Green’s function χ is given by the Dyson equation

χ−1(ω) = χ0
−1(ω) − V 2

1 D
(0)
1 (ω) − V 2

2 D
(0)
2 (ω) (3.30)

with both phonons described by their respective bare Green’s function D
(0)
i (ω) playing the

same role in the renormalization of the bare Green’s function χ0. Taking the imaginary part
of the Dyson equation (3.30) yields the expression

Imχ =
Imχ0

∣
∣
∣1 − (V 2

1 D
(0)
1 + V 2

2 D
(0)
2 )χ0

∣
∣
∣

2 .

where it was used that the imaginary part of D
(0)
i vanishes (see the discussion in Sub-

sect. 3.3.1). This is true for ω 6= ω0,i and bare phonons. For phonons already broadened by
processes other than the decay into an electron-hole pair, the situation is more complicated
and ImD

(0)
i may not be negligible.

Finally we multiply the expression for Imχ as given above by (D
(0)
1 D

(0)
2 )−1 or

(ω − ω0,1)(ω − ω0,2) to end up with the expression

Imχ = Imχ0
(ω − ω0,1)(ω − ω0,2)







[
(ω − ω0,1)(ω − ω0,2)

−(V 2
1 (ω − ω0,2) + V 2

2 (ω − ω0,1)) Reχ0

]2

+[(V 2
1 (ω − ω0,2) + V 2

2 (ω − ω0,1)) Imχ0]
2







(3.31)

for the renormalized electron-hole susceptibility χ which is shown in the first column of the
first row of Fig. 3.19.

So far we have calculated the renormalized pair Green’s function χ(ω). Adding the
contributions of phonon Raman scattering and the interference terms which are analogous
to the ones discussed in Subsect. 3.3.1) is straightforward now. Keeping in mind the presence
of two phonons in the system, the additional contributions are given in Fig. 3.19 with one
exception: the two diagrams describing the phonon Raman scattering by the bare phonons 1
and 2. These two diagrams vanish in the Fano formula because they do not have an imaginary
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1 2

Figure 3.19: The diagrams contributing with their imaginary part to the 2-phonon Fano for-
mula. The wavy lines with number i refer to the phonon i. The polarization loops correspond
to the renormalized electronic susceptibility (renormalized by electron-phonon interaction).
An open box corresponds to the Raman vertex Te. A filled box (filled circle) attached to a
phonon line i represents the photon-phonon vertex Tp,i (electron-phonon vertex Vi.

part.16 The sum of the susceptibilities of the 9 diagrams in Fig. 3.19 thus becomes

ImχFano(ω) =
∣
∣
∣Te + Tp,1D

(0)
1 V1 + Tp,2D

(0)
2 V2

∣
∣
∣

2

Imχ(ω)

= |Te|2
∣
∣
∣(ω − ω0,1)(ω − ω0,2) +

Tp1V1

Te
(ω − ω0,2) +

Tp2V2

Te
(ω − ω0,1)

∣
∣
∣

2

{· · ·}

(3.32)

where the expression in braces is the same as in (3.31). Equation (3.32) is the result for
the 2-phonon Fano theory. In Fig. 3.17 we also plotted the 2-phonon Fano formula. The
difference between the “first guess” curve denoted by Ip,1 (ω) + Ip,2 (ω) − Iel(ω) and the
curve given by (3.32) and denoted I2−p(ω) in Fig. 3.17 is due to the 2 interference terms in
row 2, column 3 and row 3, column 2 of Fig. 3.19. The 2-phonon Fano formula shows two
exact antiresonances and the phonons are repelled from each other when comparing them
to the corresponding phonons in the 1-phonon Fano curves Ip,1 (ω) and Ip,2 (ω). This effect
corresponds to level-repulsion in second order perturbation theory.

3.4.5 The case of infrared absorption

The Fano effect is also important and has an influence on optical absorption by infrared-
active phonons. The calculation of the real part of the optical conductivity σ(ω) (propor-
tional to ω Im ε(ω)) in presence of electron-phonon coupling parallels that of the imaginary
part of the Raman susceptibility with the only difference that the vertices Te, Tp, and V have

16Note, however, that they have to be taken into account when discussing sum rules (pay attention
to [3.15]) of the kind

∫
dω ImχFano(ω).
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to be reinterpreted in physical terms. This subsection serves the purpose of a comparison
of the vertices for the cases of Raman scattering and optical absorption.

The photon-electron vertex Te. We start with the vertex Te coupling the incident
light to the electronic continuum. In Raman scattering, this vertex is of second order in the
light field, and consists of two contributions: the elementary vertex17 A2ρ which contributes
a density-density-like polarization loop allowing for intraband transitions only, and a vertex
proportional to (A·j )2, allowing additionally for interband transitions, and contributing also
a density-density-like polarization loop to the Raman susceptibility (density-density-like as
far as the parity of the vertex is concerned). The total polarization loop arising from these
two contributions is density-density-like and therefore related to the longitudinal dielectric
function.

In the case of optical absorption, the role of the vertex Te is played by the combina-
tion A · j . This yields a current-current-like polarization loop and produces only electron-
hole excitations with negative parity; it does not allow for intraband excitations. Therefore,
the effect of Coulomb screening on the relevant polarization loop is marginal. The negative
parity of the electron-hole pairs excited by light is an important selection rule in optical
absorption. The current-current-like polarization loop is related to the transverse dielectric
function.

The photon-phonon vertex Tp. In Raman scattering, the photon-phonon vertex Tp is
represented by the diagram of Fig. 3.4. Due to the fact that the A ·j vertices in Fig. 3.4 have
negative parity, this is also true for the electron-hole pairs before and after the creation of
the phonon. Therefore, the phonon involved must be even.18 This is an important selection
rule!

In crystals possessing optical modes with a nonvanishing dipole moment (these modes
must necessarily have odd parity!) the light directly couples to the transverse component of
the odd phonons. The corresponding vertex is proportional to A · d , where d is the dipole
moment of the phonon. Note that a diagram analogous to the one in Fig. 3.4 does not exist
in optical absorption.

The electron-phonon vertex V . The electron-phonon vertex V plays a similar role
in Raman scattering and in optical absorption.

3.4.6 Renormalizing the electron

Electron-phonon interaction renormalizes not only the phonon but also the electronic exci-
tations. To see this, we calculate the self-energy of the electron due to the presence of the
electron-phonon interaction in the Hartree-Fock approximation. The Hartree-term, that is,
the tadpole depicted in Fig. 3.20(a) only does not vanish for a q = 0 phonon. This is not
meant to be a q 6= 0 phonon in the q → 0 limit, as is usually the case in Raman scattering,
but an exact q = 0 phonon representing a static strain in the crystal and therefore not
having to be considered in our case. The exchange-type Fock-term in Fig. 3.20(b) is the

17By the notation A2ρ we refer to the vertex discussed in Subsect 2.2.8, (A · j )2 denotes the vertex of
Subsect 2.2.9. We use the density ρ and current density j (instead of the quasimomentum p) to clarify the
relation of the electronic Raman susceptibility to the density-density and current-current response functions.

18It is clear that the crystal must possess inversion symmetry. Otherwise there are no irreducible repre-
sentations of the crystal’s symmetry group which correspond to positive and negative parity, respectively.
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ΣHF(k,ω)
ω−ω’k−k,’

k,’ω’

= +
q=0

Figure 3.20: The contributions to the electron self-energy in Hartree-Fock approximation.

term we are interested in. Using the temperature-dependent Matsubara-formalism and the
bare electron and phonon Green’s functions G0 and D0, the self-energy of the electron is
given by

Σ(k , iωn) =
∑

k ′

|gkk ′ |2(−kBT )
∑

iωn′

G0(k
′, iωn′)D0(k − k ′, iωn − iωn′) .

Performing the summation over iωn (both frequencies iωn and iωn′ are Fermi-frequencies!)
by changing the sum into an integral and using the residue theorem we find

Σ(k , iωn) =
∑

k ′

|gkk ′ |2×

×
{
nB(ωk−k ′) + nF (ξk ′)

iωn − ξk ′ + ωk−k ′

+
1 + nB(ωk−k ′) − nF (ξk ′)

iωn − ξk ′ − ωk−k ′

}

which we are going to evaluate for the case T = 0.19 Then, the Bose functions nB vanish, and
the Fermi functions nF become step functions. Performing also the analytic continuations,
the retarded self-energy is given by

Σret(k , ω) =
∑

k ′

|gkk ′ |2
{

Θ(−ξk )
ω − ξk ′ + ωk−k ′ + iδ

+
Θ(ξk)

ω − ξk ′ − ωk−k ′ + iδ

}

=

∫ ∞

0

dε′ dω′
∑

k ′

|gkk ′ |2δ(ω′ − ωk−k ′)δ(ε′ − ξk ′)×

×
{

1

ω + (ε′ + ω′) + iδ
+

1

ω − (ε′ + ω′) + iδ

}

.

(3.33)

To describe the superconductor in a dirty limit, we define the averaged electron self-energy
Σret(ω) by averaging the electron self-energy (3.33) over the Fermi surface yielding

Σret(ω) ≡ 〈Σret(k , ω)〉FS =

∑

k Σret(k , ω)δ(εk )
∑

k δ(εk )
(3.34)

19This is easier that using the T = 0 Green’s functions formalism.
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where the sum in the denominator is the density of states at the Fermi energy, NF =
2
∑

k δ(εk ). Using this we write the average electron self-energy (3.34) in the form

Σret(ω) =

∫ ∞

0

dε′ dω′ α2F (ω′)

{
1

ω + ε′ + ω′ + iδ
+

1

ω − (ε′ + ω′) + iδ

}

and introduce a function which is very important in the theory of superconductivity, the
Eliashberg-function20

α2F (ω) =
2

NF

∑

kk ′

|gkk ′ |2δ(ω − ωk−k ′)δ(εk ′)δ(εk ) .

In the definition of the Eliashberg-function we have approximated the function δ(ε′− εk ′) by
δ(ε′) making the Eliashberg-function independent of ε′. The justification of this is somewhat
complicated. We refer to page 17 of [3.16]. The ε′-integration is now trivial and, closed to
the Fermi surface, the electron self-energy can be written in the form

Σret(ω) = −2ω

∫
dω′

ω′ α
2F (ω′) +O(ω2) ≡ −λω +O(ω2) . (3.35)

Equation (3.35) defines the McMillan parameter λ that characterizes the average strength
of the electron-phonon interaction. We shall illustrate this by presenting an example, the
evaluation of the effective mass of “dressed” electrons, whose Green’s function is given by

G−1(k , ω) = G−1
0 (k , ω) − Σ(k , ω) .

Using the k -independent self-energy calculated above and noting that the excitation spec-
trum of the dressed electrons is given by the poles of the Green’s function G, we obtain

ε∗k =
εk

1 + λ
=

m

m∗ εk , i.e. m∗ = (1 + λ)m

expressing the fact that the electron-phonon coupling causes an electron mass enhanced by
a factor of 1 + λ.

3.5 The Fano-effect and superconductivity

This section is concerned with the work in [3.10]. In this publication experimental data is
illustrating the renormalization of two particular phonons by the superconducting transition
in the high-temperature superconductor HgBa2Ca3Cu4O10+δ. Theoretical considerations in
addition to the discussion and interpretation of the experimental data complete the presen-
tation.

20One comment on the unconventional symbol α2F denoting the Eliashberg-function. It does not imply
a product α · α · F , but just serves as a mnemonic for the physical meaning of the Eliashberg-function: it is
“like” a squared matrix element (g2

kk ′) times a one-phonon density of states.
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3.5.1 Introduction

After having introduced the basic notions of Fano theory, we are going to discuss the change
of phonon renormalization when entering the superconducting state at T = Tc of a high-
temperature superconductor. We shall present an experimental data and explain them by
means of an appropriate theoretical formalism.

The reason for a drastic change in the renormalization of phonons by electron-phonon
interaction when going from the normal to the superconducting state lies in the restruc-
turation of the electronic system by the appearance of a superconducting gap at T = Tc.
In high-temperature superconductors the energy scale of optical phonons and that of the
superconducting gap happen to be the same. Therefore, the change of the electronic po-
larization induced by the opening of the superconducting gap has a large influence on the
phonon self-energy and implies a change of the phonon parameters.

These superconductivity-induced phonon self-energy effects already have been observed
for a number of superconducting cuprates. The measurements usually have been motivated
by the interest in the size of the superconducting gap, which can be inferred from the
knowledge of the temperature-dependence of the phonon self-energy for particular phonons,
and the magnitude of the electron-phonon interaction. The first phonon softening measured
was that of the B1g-like O(2)/O(3) out-of-phase phonon at 340 cm−1 in Y-123, observed by
Macfarlane and coworkers [3.17] in ceramic Y-123 and by Thomsen and coworkers [3.18] in Y-
123 single crystals. The corresponding A1g-like phonon [O(2)/O(3) in-phase displacements
along the c-axis, at 440 cm−1] was later shown by Horn and coworkers [3.19] to harden.
Cooper and colleagues [3.20] and by Friedl and coworkers [3.21] also demonstrated that the
B1g phonon in Y-123 broadens below Tc.

Phonon Raman scattering measurements have already been done in the whole series of
HgBa2Can−1CunO2n+2+δ high-temperature superconductors where n = 1, . . . , 5 and are re-
ported, for example, by Zhou and colleagues in [3.22]. The Hg-1223 compound, in particular,
has been addressed in [3.23].

There are also some theoretical investigations of this effect available. Zeyher and Zwick-
nagl [3.24] have treated the problem in the framework of Eliashberg-theory for an s-wave
superconductor and an optical phonon. Later on, Nicol and Carbotte [3.25, 3.26] have ex-
tended this model to the case of an anisotropic d-wave superconductor. Devereaux [3.27]
calculated the phonon self-energy in a 2-dimensional one-band Landau liquid model with
circular Fermi surface using the BCS pairing scenario with a d-wave gap and compared
the results to measurements which have been performed at Bi2Sr2CaCu2O8 (Bi-2212) and
YBa2Cu3O7 (Y-123). In a further paper, Devereaux and coworkers [3.28] contrasted the
self-energy effect for B1g phonons to that of A1g phonons using a model of the electronic
system coupling via charge density fluctuations to phonons.

The experiment we are going to discuss as an illustration of electron-phonon interaction
in the superconducting state was performed by Hadjiev and coworkers [3.10] using as a
sample a HgBa2Ca3Cu4O10+δ (Hg-1234) high-temperature superconductor, and it was found
to show a drastic phonon frequency softening (i.e. lowering of the frequency) as well as a
linewidth increase for particular vibration modes with ion displacements directed along the
crystal c-axis when entering the superconducting state from T > Tc to T < Tc. Additionally,
the Raman peaks of the phonons also show a strong intensity enhancement by a factor of
about 10 when entering the superconducting state. These phonons are observed in (x′x′)
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polarization which corresponds to A1g +B2g in tetragonal notation.
The experimental setup. The Hg-1234 sample used in the experiment is a micro-

crystalline pellet prepared by a high-pressure technique [3.29]. The transition temperature
was determined to be Tc = 123 K by the method of zero of resistance. By X-ray diffraction
analysis it was confirmed that Hg-1234 was the main phase in the pellet, but the presence
of other phases like Hg-1223 cannot be ruled out completely. The Raman measurements
have been performed by focusing the laser light to single crystalline grains in the pellet with
microscope optics. The focusing diameter was about 2–3µm. By putting the pellet inside
of a continuous-flow liquid helium cryostat, it became possible to vary the temperature of
the pellets continuously in the range from 4 K to room temperature. Local overheating of
the sample by the laser light was kept low by using light of only moderate power, and was
estimated to amount to no more that 5–10 K.

Hg

Ba

Ca

Cu

O

Ca(2)
Cu(2)

Ca(1)
Cu(1) O(2)

O(3)

O(1)

OHg

Ba

Hg−1234

Figure 3.21: The unit cell of the high-Tc superconductor HgBa2Ca3Cu4O10+δ (Hg-1234).

Predicted phonons. The cuprate superconductor under consideration crystallizes in
the P4/mmm space group, having the tetragonal D4h point group [3.30] (see Fig. 3.21).
A group-theoretical analysis of the Γ-point phonons of Hg-1234 was presented in Chap. 4
and showed the presence of 7A1g, 2B1g, and 9Eg Raman-allowed modes. In particular,
there are no B2g phonon modes. From this fact we deduce that the phonons seen in (x′x′)
polarization are A1g phonons. The 7 modes transforming according to the A1g representation
of the tetragonal D4h group are composed out of the displacement patterns which are even
with respect to the crystal inversion center located at the Hg site and involve the Ba, Ca,
Cu(1), Cu(2), O(1), O(2), and O(3) ions. By comparison to the system Tl-1234, which
has the same group-theoretical symmetry properties, we conclude that the heavy Ba and
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phonon frequency
O(2)-O(3) in-phase 246 cm−1

O(2)-O(3) out-of-phase 369 cm−1

O(2)-O(3) in-phase, Ca out-of-phase 450 cm−1

Table 3.1: Phonon frequencies predicted for Tl-1234. Taken from [3.31]. For the crystal
structure see Fig. 3.21.

Cu ions should have the lowest frequencies, followed by the Ca, O(2), and O(3) ions, and
finally by the apex oxygen O(1) vibration having the highest frequency. Table 3.1 shows the
frequencies predicted by calculations based on a particular kind of shell model by Kulkarni
and coworkers [3.31]. This information will help us to assign the phonon peaks observed in
the experiment to the predicted phonon modes [3.22].

3.5.2 Experimental results

Presentation of the spectra. Figure 3.22 shows polarized Raman spectra of Hg-1234
measured at 4.5K and at room temperature. The spectra were recorded in three different
polarization configurations. In Fig. 3.22(a) the polarization is (x′x′), this corresponds to a
mixed symmetry of A1g + B2g in tetragonal notation. We already mentioned the fact that
in the ideal Hg-1234 crystal structure there are no B2g phonons. Hence, all the phonons
seen in the (x′x′) spectrum have A1g symmetry. The spectrum in Fig. 3.22(b) was measured
in (x′y′) configuration and is therefore related to the Raman vertices transforming like B1g.
Finally, Fig. 3.22(c) was measured in (zz) polarization and therefore also has A1g symmetry
properties.

We start describing the (zz) spectra shown in Fig. 3.22(c). At room temperature two clear
Raman peaks at 574, and 487 cm−1 and a shoulder at 532 cm−1 can be identified. At helium
temperature, they can be better resolved, especially the shoulder at 532 cm−1 becomes a
peak. The strong peaks at 574, 532, and 487 cm−1 have been assigned to vibrations of the
apex oxygen along the c-axis and to mixed modes of apex and excess oxygen at different
positions in the Hg plane [3.22].

Let us return to the (x′x′) spectra in Fig. 3.22(a). For this polarization configuration,
and at room temperature, three weak phonon-like structures are observable at 240, 390,
and 410 cm−1 which, as already mentioned, must have A1g symmetry. The phonons at
240 and 390 cm−1 exhibit strong coupling with the scattering continuum manifested by a
clear asymmetric lineshape, with antiresonances to the right of the phonons. The peak at
410 cm−1 has a symmetric lineshape and very low intensity. At low temperature, in the
superconducting state, the two lower frequency phonons show an obvious change of their
position, linewidth and, especially, the scattering intensity. Except for a change in intensity,
there is no visible change of the 410 cm−1 phonon self-energy when going from the normal
conducting to the superconducting state.

In addition to the three phonon-like features described, there are two relatively sharp
Raman features at 485 and 575 cm−1 on the top of the A1g +B2g superconductivity-induced
electronic peak. Comparing these to the spectra given in Fig. 3.22(c), one finds that the
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position of the peaks correlates with that of the mainly zz-polarized vibrations of the excess
and apex oxygen atoms. It is important to note that this is not because of polarization
leakage, but must be an intrinsic effect. The lineshape of the 575 cm−1 phonon in zz-
polarization is almost independent of temperature while the 575 cm−1 peak in the x′x′ spectra
only exists in the superconducting phase.

The two phonons of B1g symmetry which are predicted by group theory are hardly seen
in the room temperature spectrum of Fig. 3.22(b). Except for some Raman features that
coincide in position with the peaks in the x′x′-spectra, likely due to polarization leakage,
a relatively broad peak appears at 690 cm−1 that can be attributed to superconductivity-
induced B1g excitations of electronic origin. From now on we focus on the (x′x′) spectra.
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Figure 3.22: Polarized Raman spectra of Hg-1234 single crystalline grains measured at room
temperature and at 4.5K with 647.1 nm laser excitation. The spectra (a) and (b) were taken
from the same grain, whereas those in (c) were measured from another grain oriented with
the ac-plane normal to the direction of incidence of the light.

Phonon assignment. We discuss next the assignment of the A1g phonons at 240, 390
and 410 cm−1. The symmetry and frequency of these phonons suggest that they involve
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vibrations along the c-axis of plane oxygen atoms and of the Ca: the vibrations of Ba
and Cu in the planes usually have frequencies below 200 cm−1 in the structurally similar
superconducting cuprates; the A1g apex oxygen vibration is seen at 574 cm−1 in Fig. 3.22(c).
Since Ca has the lightest mass among the cations in Hg-1234, its frequency is expected to be
close to that of the low frequency (bond bending) oxygen vibrations and the Ca vibrations
may therefore mix with the latter. This gives a total of three Raman active A1g modes in
the 200–450 cm−1 region involving pairs of planes. Lattice dynamical calculations for the
isomorphic Tl-1234 compound [3.31] indeed show that the vibrations of Ca and plane oxygen
atoms are mixed. In the paper of Kulkarni and coworkers [3.31], it was calculated for Tl-1234
that the mixed vibrations along the c-axis of oxygen in the CuO2 planes and Ca moving in-
phase and out-of-phase with the oxygen atoms take palce at 246 and 450 cm−1, respectively.
One phonon corresponds nearly exclusively to the vibration against each other of the two
CuO2 layers which are separated by Ca atoms. This phonon has a small admixture of calcium
and should be found at 369 cm−1. Unfortunately, there are no experimental data available
so far for Tl-1234 that may check the model of the lattice dynamical predictions, which,
in any case, are known to be rather unreliable, especially concerning eigenvectors [3.32].
Ab initio calculations, based on the electronic total energy [3.33, 3.34], would be highly
desirable in order to achieve a reliable assignment of the frequencies and eigenvectors of
the three A1g modes under discussion. Nevertheless even these calculations are known to
lead to considerable errors in the phonon eigenvectors, especially when phonon frequencies
corresponding to the same symmetry are close to each other. A way to solve this problem is to
determine the eigenvectors experimentally by isotopic substitution [3.32], an investigation
which has not yet been performed for the Hg-based superconductors. As a possible way
out of this impass we examine the possibility of adopting the eigenvalues and eigenvectors
calculated for Tl-1234 for the interpretation of our data concerning the 240, 390 and 410 cm−1

phonons of Hg-1234. The similarity of the electron-phonon coupling strength of the modes
at 240 and 390 cm−1, as displayed by their lineshape and dependence of Raman intensity on
temperature, suggests that these two phonons should have similar vibrational patterns. In
addition, the phonons at 265 and 400 cm−1 in Hg-1223 have similar temperature dependence
as those at 240 and 390 cm−1 in Hg-1234 [3.23]. In the Hg-1223 compound there are only two
Raman active mixed plane-oxygen and Ca modes [3.31]. Therefore, we assign the A1g modes
at 240 and 390 cm−1 in Hg-1234 to the mixed Ca and oxygen modes and that at 410 cm−1

to nearly pure plane oxygen vibrations along the c-axis. The weak electron-phonon coupling
observed for the 410 cm−1 phonon would then have to result from some cancellation within
each pair of CuO2 planes sandwiching the Ca plane, possibly related to the fact that those
CuO2 planes move in opposite direction.

Fitting the Fano parameters. To show more clearly the dependence of the phonon
self-energy on temperature, the (x′x′) polarized Raman spectrum of Hg-1234 has been
measured for several temperatures between 4.5K and 295K, see Fig. 3.23. The 240 and
390 cm−1 phonon peaks display clear asymmetric lineshapes with a characteristic antireso-
nance at the higher frequency side in the whole range from room temperature (but much
stronger asymmetric above Tc, see q in Fig. 3.24) to 4.5K, a fact which suggests an inter-
action between the discrete phonon states and the electronic continuum, as found for other
cuprates [3.20, 3.21, 3.23]. We have fitted the measured phonon peaks with a standard Fano
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Figure 3.23: Raman spectra of Hg-1234 measured at various temperatures between room
temperature and 4.5K in x′x′ polarization. The numbers in the right column give the offset
of the spectra with respect to that at the bottom.
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function (3.11) [the parameters q and ε are related to ωp, ωa, and Γp by (3.12)]

I(ω) = Ic
|q + ε|2
1 + ε2

+ Ib(ω) , (3.36)

in which ε = (ω − ωp)/Γp with the renormalized phonon frequency ωp = ω0
p + δωp, ω

0
p is

the “bare” phonon frequency, q the asymmetry parameter, Γp the linewidth (the half width
at half maximum, HWHM), Ic a quantity proportional to the square of the Raman vertex
of that part of the electronic continuum that interferes with the phonon (assuming to be
constant in the phonon region). Additionally, we have added the contribution Ib representing
a possible noninterfering background. Raman spectra and the fitted Fano profiles of the 240
and 390 cm−1 phonons are shown in Figs. 3.24(a) and 3.24(a), respectively. The fitted values
of the Fano parameters (except for the trivial background Ib) and the renormalized phonon
intensity [3.35] [see Subsect. 3.4.1 and in particular (3.19)]

Ip ≡ π[I(ωp) − Ib(ωp)]Γp = πIcq
2Γp (3.37)

of the 240 and 390 cm−1 peaks are plotted versus temperature in Figs. 3.24(b) and 3.25(b)
(We assume that q is real. An imaginary part of q can be represented by a noninteracting
electronic background, that is by Ib, as shown in Subsect. 3.3.2 and also in [3.12]). Note
that Ic and Ib are intensities per unit frequency while Ip is the integrated intensity of the
discrete phonon excitation.

Apart from some differences in details, the temperature dependencies of frequency,
linewidth and intensity of the 240 and 390 cm−1 peaks display a remarkable abrupt change
in a narrow temperature interval (10–15K) right below Tc. Using the phonon frequen-
cies ωN

p and ωS
p in the normal state and in the superconducting state, the relative soften-

ing (ωN
p − ωS

p )/ωN
p of the 240 and 390 cm−1 phonons is 6% and 18%, respectively. The

phonon linewidth goes through a maximum below Tc with an overall change in linewidths
(δΓp)max/ω

N
p equal to 10% for the phonon at 240 cm−1 and 40% for that at 390 cm−1.

Linewidths and anharmonic broadening. In the normal state, the linewidths of
the 240 and 390 cm−1 phonons increase with increasing temperature. Assuming that the
electronic susceptibility in the normal state is temperature independent, this indicates the
presence of another phonon decay channel beside decay into an electron-hole pair. We
are going to describe this additional channel as an anharmonic decay into two phonons.
This process has been treated theoretically in Subsect. 3.4.2 and implies a temperature-
dependence of that contribution to the phonon linewidth of the form (3.26).

An additional nearly temperature independent contribution Γb to the linewidth may
result from elastic scattering by defects and, in the normal state, to the coupling of the
phonon to the structureless continuum of electronic excitations. We have fitted the temper-
ature dependence of the phonon linewidths Γp(T ) at 240 cm−1 (Fig. 3.24(b)) and 390 cm−1

(Fig. 3.25(b)) in the normal state with the function (see Eq. (3.26))

ΓN
p (T ) = Γ0

anh

[

1 + 2

(

exp
~ωp

2kBT
− 1

)−1
]

+ Γb . (3.38)

Note that ΓN
p (T=0) = Γ0

anh + Γb is the sum of the temperature-dependent part of ΓN
p (T )

at T = 0 and the temperature-independent part Γb. Consequently, the change in linewidth
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Figure 3.24: Raman spectra of the A1g mode at 240 cm−1 measured in x′x′ polarization with
the 647.1 nm laser line at different temperatures and the corresponding fitted Fano profiles
(a). The fitted frequency, linewidth Γp (HWHM), asymmetry parameter q and the phonon
intensity are plotted in (b) as open circles. Smooth dotted lines are given as a guide to
the eye. The dashed line in the linewidth panel represents a fit to the widths found above
Tc with the function in (3.38), taking ωp = 240 cm−1. This fit yields Γ0

anh = 3 cm−1 and
Γb = 4.4 cm−1.
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Figure 3.25: Raman spectra covering the 390 cm−1 A1g mode measured in x′x′ polarization
with the 647.1 nm laser line at different temperatures and the corresponding fits with Fano
profiles (a). The fitted frequencies, linewidths Γ0 (HWHM), lineshape parameters q and the
phonon intensity are represented in (b) by open circles. Smooth dotted lines through the
points are given as a guide to the eye. The dashed line in the linewidth panel represents a
fit to the widths found above Tc with the function in (3.38), taking ωp = 390 cm−1. This fit
yields Γ0

anh = 7.3 cm−1.
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due to the superconducting transition is given by the linewidth at T = 0 minus ΓN
p (T=0),

that is δΓp = Γp(0) − (Γ0
anh + Γb). The dashed line in Fig. 3.24(b) represents the fit with

Eq. (3.38) (linewidths are given as HWHM) with Γ0
anh = 3 cm−1 and Γb = 4.4 cm−1 taking

ωp = 240 cm−1 (these quantities have rather large error bars). The fit allows us to distinguish
between the temperature-dependent contribution Γanh, and the constant contribution Γb to
the linewidth, of which the latter is likely to be due to the interaction of the 240 cm−1 phonon
with electronic excitations in the normal state and/or impurity scattering. The fit of the
temperature dependence of the 390 cm−1 phonon linewidth with Eq. (3.38) yields Γb ≈ 0.
The results of such a fit are represented by the dashed line in Fig. 3.25(b). The fitting
parameters for this case are Γ0

anh = 7.3 cm−1 for ωp = 390 cm−1. The strongest change
in the phonon linewidth takes place just below Tc, as would be expected for a crossover
of the opening superconducting gap and the phonon energy. When further lowering the
temperature the linewidth remains nearly constant.

3.5.3 Discussion and model

Introduction and assumptions. The expression (3.36) for the Raman efficiency of a sys-
tem with a phonon coupled to a continuum of electronic excitations can be written in terms
of microscopic parameters [3.11, 3.8] (neglecting for simplicity other phonon renormalization
mechanisms as, for instance, anharmonic decay)

I(ω) ∼ πT 2
e ρ(ω)

(

ω − ω0
p + TpV

Te

)2

(
ω − ω0

p − V 2R(ω)
)2

+ (πV 2ρ(ω))2
(3.39)

where Te, Tp, and V are the vertices describing the coupling of the electron-hole excitations
to the photons (Raman vertex), the coupling of the phonons to the photons, and the electron-
phonon coupling, respectively. The bare phonon frequency is ω0

p. The spectral function of
the electrons ρ(ω) and the function R(ω) are related to the imaginary and the real part of
the retarded electronic polarizability Π(ω) at q = 0 by

ρ(ω) = − 1

π
Im Π(ω) and R(ω) = Re Π(ω) , (3.40)

respectively. A Kramers-Kronig relation allows us to calculate R(ω) from ρ(ω). Note
that ρ(ω) is an odd function of ω, this is a general property of retarded correlation functions
(see the discussion at the end of Sect 3.2) and has to be kept in mind when performing the
Kramers-Kronig transformation.

In Eq. (3.39), it is implicitly assumed that the vertices Te, Tp, and V are all independent of
energy and quasimomentum (these assumptions are justified by the small range of energies
covered by the Raman spectra) and are taken to be real. We will also assume that the
vertices Te and Tp do not change much21 when crossing the superconducting phase transition

21The change of the electronic Raman susceptibility across Tc mainly is due to the change of the Green’s
function of the electron. The vertex Te is given by (2.16) and (2.13) and, therefore, is dependent on the
electronic Green’s function (see also Fig. 2.3). The intermediate state (denoted by m in Fig. 2.3)), however,
is an interband electron-hole excitation. The susceptibility for electron-hole interband excitations does not
change essentially across Tc and, hence, the Raman vertex Te is constant across Tc in good approximation.
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at T = Tc. These vertices include electronic transitions to intermediate states (with k -
conservation) which may have energies close to those of laser photons ωL. The band structure
changes at Tc only in a region of width approximately twice the maximum gap 2∆0 around
the Fermi energy. Therefore, and because of the fact that 2∆0 is considerably less than
the typical lifetime broadening of interband transitions, the resonance conditions should not
change much upon crossing Tc. Hence, the Raman vertex Te can be assumed to be the
same in the normal as in the superconducting state. This assumption has received ample
confirmation in the cases of Y-123 [3.36] and Y-124 [3.37, 3.38]. The vertex Tp involves
first absorbing a photon, then emitting a phonon and after that emitting the scattered
photon. Also in this case, and for the same reasons, it is unlikely that Tp would change
when crossing Tc.

We conclude from Eq. (3.39) that the broadening of the phonon due to the coupling to
the continuum of excitations is given by [3.21]

Γ = πV 2ρ(ωp) (3.41)

Note that anharmonic broadening Γanh can be included by replacing the term πV 2ρ(ω)
in Eq. (3.39) by πV 2ρ(ω) + Γanh provided the real part of the self energy δωanh

p given by
anharmonic broadening does not vary much around ω0

p. In this case δωanh
p can be absorbed

as a frequency shift into ω0
p (i.e. we replace ω0

p + δωanh
p (ω0

p) by ω0
p in Eq. (3.39)).

Ratio of vertices; electronic continuum. If we attempt to determine V by fitting
experimental data with (3.41), we are faced with a problem. When trying to calculate V from
the linewidth, we need to know the electron spectral function ρ(ω). In the case of vanishing
electron-phonon coupling V , Eq. (3.39) gives I(ω) ∼ πT 2

e ρ(ω). Although Te is unknown
it can be taken as a scaling factor when we represent the data in arbitrary units. On the
other hand, from the theory of electronic Raman scattering in the superconducting state, we
know that for tetragonal superconductors with a gap function of k2

x − k2
y symmetry (B1g in

the D4h point group) the function ρ(ω) is linear in ω in the low-frequency regime (ω <∼ ∆0)
(see [3.37, 3.39]). Under this assumption and using Eq. (3.41), we can calculate the ratio of
the electron-phonon coupling constants for the two particular phonons at 390 cm−1 and at
240 cm−1 in the superconducting state to be

V 2
390

V 2
240

=
Γ390

Γ240
· 240 cm−1

390 cm−1
(3.42)

which yields V390/V240 ≈ 1.5.
Temperature-dependence of the vertex V . The second possibility to obtain in-

formation about V from experimental spectra makes use of the frequency shift δωp =
−V 2R(ωp). For this purpose we must know the unrenormalized energy which is, in principle,
not an observable.

This problem can be overcome through the kindness of nature: in the material at hand
the experimental data for the normal state suggest that V , and thus the phonon self-energy,
is rather small. Nearly negligible electronic self-energy contributions to Γp in the normal
state can be inferred from Figs. 3.24(b) and 3.25(b). The increase in Γ observed below Tc,
in spite of the decrease in the electronic continuum at frequencies below ≈ 400 cm−1, also
confirms the fact that V in the superconducting state is much larger than in the normal
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state. We shall make use of this fact to obtain the real and imaginary parts of the self energy
in the superconducting state by referring the corresponding frequencies and widths to those
in the normal state (which are assumed to vanish).

We note, however, that values of the Fano parameter q of the order of one are found for
the two phonons in the normal state. Correspondingly, sigmoid-type spectra can be seen
for these phonons in Fig. 3.23 in spite of their meager strength. The expression for q is (see
Eqs. (3.36) and (3.39))

q =
V Tp/Te + V 2R(ω)

πV 2ρ(ω)
. (3.43)

The weak phonon spectra observed in the normal state allow us to set Tp ≈ 0. The values
of q ≈ 1 found experimentally thus imply that R ≈ ρ.

The reason why V in the normal state differs from that in the superconducting state can
be attributed to the fact that V has to be interpreted as a kind of averaged k -dependent
matrix element gk . For anisotropic vertices γk and gk , the polarization loops22 〈γ2

kχk (ω)〉
and 〈g2

kχk (ω)〉 usually do not have a property which they share in the isotropic case: they
are not anymore functions mutually proportional in ω. Therefore, if we try to define effective
isotropic vertices by

〈γ2
kχk (ω)〉 = T 2

e ρ(ω)

〈g2
kχk (ω)〉 = V 2ρ′(ω)

we have to keep in mind that there appear two different spectral functions ρ(ω) and ρ′(ω).
In the isotropic case, the spectral density ρ(ω) is deduced from the overall electronic Raman
spectrum which is proportional to 〈γ2

kχk (ω)〉 and the fact that ρ(ω) is equal to ρ′(ω) yields
the function 〈g2

kχk (ω)〉 up to a multiplicative constant. This is no longer true for anisotropic
vertices. This deficiency, however, can be repaired by the following reasoning.

We express the electron-phonon vertex by a multiple of the Raman vertex γk , plus a
variation δgk writing

gk = αγk + δgk ,

where a condition has yet to be given so as to specify the normalization of δgk . Then the
phonon self-energy is given by

〈g2
kχk (ω)〉 = α2〈γ2

kχk (ω)〉+
+ 2α〈(δgk)γkχk (ω)〉
+ 〈(δgk)2χk (ω)〉

where the mentioned condition will be fixed now by requiring the term proportional to δgk
to vanish. It is clear that this proceeding implies a temperature-dependent coefficient α,
because the susceptibility χk (ω) itself is temperature-dependent. The function ρ(ω) now
will be defined by

〈γ2
kχk (ω)〉 ≡ T 2

e ρ(ω)

specifying also the effective Raman vertex Te. The phonon self-energy assumes the form

〈g2
kχk (ω)〉 = α2T 2

e ρ(ω) + 〈(δgk)2χk (ω)〉
22Strictly, the function χk (ω) is not a susceptibility because a k -integration over the Brillouin zone still

has to be performed. Nevertheless we call this object a susceptibility.

c© 1999, Thomas Strohm, www.thomas-strohm.de



118 CHAPTER 3. PHONON RAMAN SCATTERING

and at the position of the phonon ωp,0, this becomes the definition of the effective electron-
phonon vertex V , namely

〈g2
kχk (ωp,0)〉 =

(
α2T 2

e + β2
)
ρ(ωp,0) ≡ V 2ρ(ωp,0) ,

where β2 = 〈(δgk)2χk (ω)〉/ρ(ωp,0). It has already been shown that the coefficient α depends
on temperature. This is also true for the coefficient β, because if χk (ωp,0) changes its k -
dependence, different k -space regions of δgk will be weighted differently in the average than
before and the average in the definition of β changes.

It is safe to assume that V is constant (as a function of temperature) in the normal phase
as well as in the superconducting phase and does change only at the phase transition. This
justifies the assumption of having two different matrix elements V , one for the normal state,
and one for the superconducting state.

H e

H p

h p

Γ2 p Γe2

I

0 ωδ
Figure 3.26: Definition of quantities used in the text for the electronic and phonon spectra
of Hg-1234.

A theoretical model. We consider next the large frequency shifts δωp and the in-
crease in the phonon intensity observed when lowering T below Tc. In view of the many
uncertainties involved in detailed microscopic theories we propose a simple treatment which
is physically transparent and yields results in reasonable agreement with the observations.
The calculations are based on the schematic representation of the electronic scattering spec-
tra shown in Fig. 3.26. Instead of performing the Kramers-Kronig integrations required
for the calculation of δωp directly from the electronic spectrum, we replace the electronic
spectrum of Fig. 3.26 by a Lorentzian function at its maximum ω = ωa and having a width
of Γe.

The Lorentzian function and its Kramers-Kronig transform are the real and imaginary
part, respectively, of a retarded susceptibility of the form Π(ω) = Ne(ω − ωe + iΓe)

−1 ,
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namely
R(ω) = Ne Re[(ω − ωe) + iΓe]

−1 and

πρ(ω) = Ne Im[(ω − ωe) + iΓe]
−1 .

Here, the quantity Ne corresponds to the number of excitations involved in the electronic
continuum.

Recalling the equations δωp = −V 2R(ωp) and Γel
p = πV 2ρ(ωp) it is obvious that each of

these relations separately is not of much use to us, because the matrix element V as well as
the excitation number Ne are unknown. Both equations together, however, yield

δωp

Γel
p

= − R(ωp)

πρ(ωp)
,

where Γel
p = Γtot

p − Γanh
p is the electronic contribution to the phonon linewidth. If we make

use of the model susceptibility defined above, the relation

δωp = −Γel
p

δ

Γe
(3.44)

using δ = ωe − ωp results. The quantities on the right side of (3.44) can be taken from
experiment, that is (3.44) allows for the calculation of the phonon lineshift.

For the phonons at 240 and 390 cm−1 we use this relation to calculate “theoretical”
lineshifts δωtheo

p and compare these to the experimentally determined lineshifts δωexp
p . The

results are given in Tab. 3.2. In the case of the 487 and 575 cm−1 phonons, the lineshift
cannot be meaningfully determined from the experiment.

A similar expression can be derived for the height of the phonon peak Hp. We start with
Eq. (3.37) and use qΓp = δωp as well as q = R(ωp)/(πρ(ωp)). This yields

Ip =
Ic

πT 2
e ρ(ωp)

· πT 2
eR(ωp) · δωp . (3.45)

The quotient on the right side of this relation is one, and the factor πT 2
eR(ωp) is the Kramers-

Kronig transform of the electronic Raman intensity at ω = ωp. In suitable units we write
Ip = πHpΓp and πT 2

eR(ωp) = πHeΓe/δ and obtain for the ratio of the phonon height to the
height of the electronic peak the relation

Hp

He
=

Γe

Γp
· δω
δ
. (3.46)

We use this relation to calculate “theoretical” phonon heights H theo
p of the 240 and 390 cm−1

phonons and compare them to the experimentally determined phonon heights H exp
p in

Tab. 3.2. For the 487 and 575 cm−1 phonons we use Eq. (3.46) to calculate the lineshift
which is experimentally not accessible.

The agreement of the “theoretical” values for the phonon lineshifts δωtheo
p and phonon

heights H theo
p and its experimentally determined counterparts δωexp

p and Hexp
p , is quite sat-

isfactory, especially when one considers the simplicity of the theory.
For the purpose of extracting the coupling constant V from the experimental spectra, the

Raman vertex Te has to be known. Although it could be determined from experiment [3.37],
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ωp

cm−1

Γp

cm−1

Γ0
anh

cm−1
δ

cm−1

hp

a.u.

δωtheo
p

cm−1

240 9 3 380 20 16
390 22 7.3 230 35 37
487 23 - 133 - 6.1
574 30 - 45 - 2.2

ωp

cm−1

δωexp
p

cm−1

Htheo
p

a.u.· cm−1

Hexp
p

a.u.· cm−1
NeV 2

cm−2 λν

240 15 87 120 5700 0.08
390 40 158 110 9200 0.08
487 - - 40 810 5 × 10−3

574 - - 32 99 6 × 10−4

Table 3.2: The per-phonon quantities at T = 0 used in the text. The electronic peak is
characterized by its center frequency ωe = 620 cm−1, its linewidth Γe = 250 cm−1 and its
peak intensity He = 80 a.u. Here, the symbol “a.u.” denotes the arbitrary units for the
peak intensities taken from Fig. 3.22. The lineshift δωtheo

p and the phonon height H theo
p are

calculated using Eqs. (3.44) and (3.46), respectively, for the 240 and 390 cm−1 phonons.
The lineshift δωtheo

p of the 487 and 574 cm−1 phonons is as predicted by Eq. (3.46). The
coupling strength NeV

2 and electron-phonon coupling parameter λν have been determined
using Eq. (3.47) and Eq. (3.51), respectively, for all four phonons.

we will use here another approach to characterize the electron-phonon coupling strength.
We define the number of electronic excitations Ne involved in the electronic peak around
ω = ωe by ρ(ω) = Neδ(ω − ωe). Then, δωp = V 2R(ωp) becomes

NeV
2 = δωp · δ (3.47)

and can be used to determine the values of the combination NeV
2 from the experiment (see

Tab. 3.2).
Estimates of McMillan’s λ. It is of interest to express the electron-phonon coupling

strength by means of McMillan’s dimensionless electron-phonon interaction parameter λ
which in Eliashberg’s theory plays the role of the combination “N(0)V ” in the BCS theory
and also represents the mass enhancement of electrons (1 + λ) induced by their coupling to
the phonon system. This parameter, already discussed in Subsect. 3.4.6, is defined by [3.40]

λ = 2

∫ ∞

0

dω
α2F (ω)

ω
(3.48)

where the spectral function α2F (ω) determines the transition temperature Tc in Eliashberg’s
theory. Using the electronic density of states at the Fermi level N0 = 2

∑

k δ(εk ) in the
normal state, α2F (ω) is given by the expression [3.40]

α2F (ω) = N−1
0

∑

ν,kσ,k ′σ′

|Vν,kσ,k ′σ′ |2δ(ω − ων,k−k ′)δ(εk )δ(εk ′) (3.49)

where Vν,kσ,k ′σ′ is the electron-phonon matrix element for phonon branch ν, ων,k is the
frequency of the phonon of branch ν with momentum k , and the sum over ν includes
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all optical phonons. Because of the fact that Raman scattering only gives information
about phonons at the center of the BZ (Γ-point), we approximate the optical phonons by
dispersionless phonons with the frequency of the corresponding Γ-point phonon, that is
ων,q = ων,q=0 ≡ ωp,ν and also take Vν,kσ,k ′σ′ = Vνδσσ′ . Replacing (3.49) into (3.48) yields

λ = N0

∑

ν

V 2
ν

ωp,ν
. (3.50)

The λ represented by Eq. (3.50) is to be regarded as the contribution to λ which one would
have if all phonons of a given branch would couple as much as that at the Γ-point. We
have determined above for several phonons values of V 2Ne where Ne is the total number
of interacting excitations induced by the superconductivity. To a reasonable approximation
we can write Ne ≈ ∆0N0 and, therefore,

λ =
∑

ν

λν , λν =
1

∆0
· NeV

2
ν

ωp,ν
. (3.51)

Using ∆0 = 310 cm−1, the values of λν are given by 0.08, 0.08, 5 × 10−3, and 6 × 10−4 for
the phonons at 240 cm−1, 390 cm−1, 487 cm−1, and 575 cm−1 respectively. In order to get
a feeling for the magnitude of these electron-phonon coupling constants we note that if all
phonons had the same value of λν as that determined for the 390 cm−1 phonon (≈ 0.1 per
branch), the total λ would be 0.1 · 60 = 6, a large value indeed which would lead to a very
high Tc if taken literally in the BCS theory.

3.5.4 Refinements

The analysis of the experimental data presented above was guided by the quest for simplicity
and clearness. Following this spirit some effects which should be taken into account in the
theory have been neglected. The purpose of this subsection is to dicuss some of the effects
that could be included in a simple manner in the theory presented above.

Symmetry of the polarizability. The first caveat when going through the theory
above concerns the symmetry of the polarizability. A polarizability Π(ω) describes a bosonic
excitation, therefore has the property Π(ω) = Π∗(−ω). Consequently the symmetry relations

ρ(ω) = −ρ(−ω)

R(ω) = R(−ω)

for the imaginary and the real part of the polarizability, respectively, have to be fulfilled.
In Fig. 3.27, we have plotted the polarizability of a system possessing of a single Lorentzian
excitation with an energy of ωe = 620 cm−1 and a width of Γe = 250 cm−1 as was used as
a model for the electron-hole excitations in the theory presented in the preceding sections.
The different curves in the figure under consideration are the spectral density ρ0(ω) and
the corresponding real part R0(ω) of the polarizability Π0(ω) = (ω − ωe + iΓe)

−1. Denoted
by Π1(ω) is the result of symmetrizing Π0(ω), that is Π1(ω) = Π0(ω) + Π∗

0(−ω); the quan-
tities ρ1(ω) and R1(ω) refer to the imaginary and real part of Π1(ω), respectively. Finally,
Rδ(ω) is the real part of (ω−ωe)

−1, the polarizability of a discrete δ-function-like excitation
at ω = ωe.
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Figure 3.27: The real- and imaginary part R0(ω) and πρ0(ω), respectively, of a discrete
excitation at ωe = 620 cm−1 having a width (HWHM) of 250 cm−1. The corresponding
curves R1(ω) and πρ1(ω) additionally have the correct parity. The curve Rδ(ω) is the
Kramers-Kronig transform of a δ-function at ωe.
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The spectral functions ρ0(ω) and ρ1(ω) are almost indistinguishable for ω > 0. If we
take either one of them and perform a Kramers-Kronig transformation (not taking the
symmetry of the polarizability into account), the real part R0(ω) will result. If we perform
it the correct way, the real part R1(ω) results. In contrast to the imaginary parts of the
polarizability, the real parts are quite different, especially in the region up to ≈ ωe/2. If a
phonon is located there the lineshift predicted by the theory, being due to the coupling to
the electronic continuum, may be off by up to a factor of two!

Effective phonon-phonon interaction. Another effect which should be considered in
the present case of a rather strong coupling of the phonons to the electronic continuum is the
effective phonon-phonon coupling mechanism described in Subsect. 3.4.4. In Fig. 3.28, we
show the actual spectrum measured in the experiment (noisy solid line), and the efficiency
predicted by the elementary Fano theory using the parameters determined by our theory.
The long-dashed curve corresponds to the Fano efficiency when coupling the phonon at
ωp = 260 cm−1 to the electronic continuum, and the short-dashed curve is the result when
coupling the phonon at ωp = 390 cm−1 to the continuum. The structure around the two
phonons is magnified in Fig. 3.29, where, in addition to the curves already mentioned, the
result of the two-phonon theory with the same coupling-parameters as used in the other two
curves is plotted. The figure shows clearly, that in the parameter regime under consideration,
the phonon-phonon coupling mechanism mentioned maybe important; it may change the
coupling constants resulting from our theory by up to a factor of two.
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Figure 3.28: The Hg-1234 spectrum at T = 5K (solid line), the Fano-fit involving the
phonon at ωp = 260 cm−1 (long-dashed line), and the Fano-fit involving the phonon at
ωp = 390 cm−1 (medium-dashed line).
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Figure 3.29: The solid, long-dashed, and medium-dashed lines are as in Fig. 3.28, with the
exception that the frequency-range is different from the one there. The short-dashed line is
the result from the 2-phonon Fano theory with the same parameters as in the simple Fano
theory fits.
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3.5.5 Conclusions

We have observed strong superconductivity-induced phonon self-energy effects for the A1g

phonons in Hg-1234 which show a strength exceeding that found in any other cuprate super-
conductors so far. The dramatic softening of the 240 and 390 cm−1 phonons below Tc is simi-
lar to that required to interpret the change in vibrational amplitude which has been observed
in nearly optimally doped YBa2Cu3O7−δ at Tc in ion channeling experiments [3.41] (see also
the results from resonant neutron absorption spectroscopy in Bi2Sr2CaCa2O8 by Mook and
coworkers [3.42]). The phonon self-energy effects, in combination with a clear development
of the superconductivity-induced electronic Raman peaks, offers a unique opportunity for
a detailed theoretical modeling of electron-phonon coupling processes in superconducting
cuprates. In spite of the large values of λ associated with the large electron-phonon cou-
pling effects discussed here, the question of a possible connection between the observed
strong electron-phonon coupling and the remarkably high Tc of the Hg-based superconduct-
ing cuprates must remain open.
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Chapter 4

Summary and outlook

4.1 Electronic Raman scattering in high-temperature

superconducting cuprates

In Chap. 2, devoted to electronic Raman scattering in high-temperature superconducting
cuprates (see also [4.1]), we presented a numerical calculation of the electronic Raman ef-
ficiency for the high-temperature superconductors YBa2Cu3O7 (Y-123) and YBa2Cu4O8

(Y-124). The calculations are based on a BCS-like description of the superconducting state
with a k -dependent (but band-independent) gap function on the one hand, and on the re-
sult for the electronic band structure as predicted by the linear muffin-tin orbital (LMTO)
method in combination with the atomic-spheres approximation (ASA), on the other. The
electronic Raman efficiency has been calculated in absolute units (by making use of the
Eqs. (2.31) and (2.52)), taking both, the real and imaginary parts of the Tsuneto-function
into consideration. The effect of electronic screening on the Raman efficiency has been taken
into account as well. The Raman vertex was derived from the electronic band structure us-
ing the effective mass approximation (hence, neglecting possible resonance effects), and for
the gap function, the dx2−y2-symmetric expression ∆k = ∆0 cosϕk , where ∆0 is the only free
adjustable parameter in the calculation, has been adopted.

To the best of our knowledge, the calculations described are the first ones based on
LMTO results, describing the superconducting state, and taking correctly (according to
Eq. (2.52)) electronic screening into account. It seems that the work at hand also presents
the first calculation of electronic Raman scattering in high-temperature superconducting
cuprates providing results in absolute units. The conclusions from this calculation, and its
comparison to experimental results, are presented in detail in Sect. 2.7.

The general observations are that the line shapes of the spectra are reproduced quite
well by the calculations. Also the peak intensities, measured in absolute units, correspond
to the experimentally determined ones within a factor of about two. The relative peak
positions, as predicted by the calculations, coincide almost for the cases of A1g and B1g

polarization (symmetry properties are given in tetragonal notation). This finding, however,
is not reflected in the results of the experiment. In (optimally doped) Y-123 [4.2], it was
found that the B1g spectrum peaks at approximately twice the Raman shift of the peak
in the A1g spectrum. The experimental B1g peak is also much broader than the A1g peak.
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A possible explanation of this fact already has been suggested by Devereaux et al. [4.3].
They observed that the electronic screening may affect the position of the A1g peak, while
for the B1g Raman efficiency (in tetragonal systems) the screening vanishes by symmetry.
Their conclusion was that the position of the B1g peak reflects the value of 2∆0, and that
the A1g peak is shifted to lower values of the Raman shift by the influence of electronic
screening.

Our calculations, however, have shown that this conjecture is incorrect. Neither in the
calculated electronic Raman efficiency for Y-123, nor for Y-124, there is a significant shift
of the A1g peak due to the presence of electronic screening. Moreover, we have proven (in
Subsect. 2.3.10) that a significant shift of the A1g peak can only be achieved if the band
structure shows rather peculiar properties. For this case, however, we have pointed out that
even the B1g peak can shift its position [4.4], this time not by the influence of electronic
screening, but by the properties of the band structure itself. All these observations led us
to conjecture [4.1] that the A1g peak reflects the gap amplitude and that the B1g peak is
shifted and broadened by additional excitations which are not contained in the model on
which our calculation is based. In [4.1], we tentatively attributed these additional excitations
to possess magnetic origin.

A further attempt to shed light onto the problem of the A1g and B1g relative peak
positions was made by Manske et al. [4.5]. They have shown that the inclusion of a particular
(exciton-like) kind of vertex renormalizations into the theory of electronic Raman scattering
in superconductors leads to a nonvanishing electronic screening of the B1g component even
in systems with tetragonal symmetry (this fact actually was discovered already earlier by
Devereaux et al. [4.3]). Their theory and the model calculation they presented, however,
was seriously flawed by algebraic errors, a fact that we have pointed out in [4.6].

Another conclusion concerns the form of the gap function. While electronic Raman
scattering (in a system without impurities) is not sensitive to the phase of the gap function
(and therefore cannot distinguish between a d-like and a |d|-like anisotropic s-wave gap
function), due to its dependence on the polarization of the incoming and scattered light,
it is able to provide more information on the gap function than most other experimental
methods.

In tetragonal systems, a dx2−y2-like gap function implies a linear dependence of the
electronic Raman efficiency (at T = 0, or divided by the Bose factor) on the Raman shift in
the low-frequency regime for the case of the A1g and B2g polarizations. Besides, it gives rise
to a cubic dependence of the B1g component of the Raman efficiency on the Raman shift
(the reason for this is that the gap function possesses B1g symmetry and, therefore, the gap
function and the B1g component of the Raman vertex vanish along the x ± y diagonals of
the Brillouin zone). These facts have already been shown by Devereaux et al. [4.7, 4.3].

Most of the high-temperature superconducting cuprates, however, do not possess tetrag-
onal symmetry, but are slightly orthorhombically distorted. Two types of such distortion
exist, they are present in Y-123 and Bi2Sr2CaCu2O8 (Bi-2212) and are depicted in Fig. 2.25.
The distortion renders the A1g and B1g (A1g and B2g) tetragonal representations of the point
symmetry group of the Y-123 (Bi-2212) crystal degenerate. An implication of this is that
the B1g Raman efficiency (divided by the Bose factor) of Y-123 acquires an additional linear,
while the corresponding B1g spectrum of Bi-2212 does not. This was shown theoretically and
also found when analyzing experimental data (Sect. 2.9). The additional linear component
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is related to the shift of the nodes of the gap function with respect to the position of the
nodes of the B1g component of the Raman vertex (inverse effective mass). These features
have been demonstrated in Sect. 2.9 and in [4.8], and a method for the determination of
the mutual shift of the node positions for nontetragonal high-temperature superconducting
cuprates, based on the inverse effective masses obtained from the LMTO band structure
and the experimentally determined Raman efficiencies at low values of the Raman shift, has
been developed. The method has been applied to the case of Y-123, for which a result has
been given.

One problem posed by the interpretation of the linear component in the low-energy
component of the B1g spectrum of Y-123-like orthorhombically distorted high-temperature
superconductors, however, remains. It concerns the effect of impurities, which may also
contribute a linear component to the B1g spectra. While the effect of the orthorhombic
distortion on the linear component of the low-energy spectra is basically understood, we
know very little about the effect of the impurities. Together with the fact that the low-energy
part of the Raman spectra of high-temperature superconductors is quite delicate from an
experimental point of view (among the complications involved we mention the proximity of
the laser line to the frequency regime under interest and the presence of strongly coupled
phonons, especially in Y-123), this renders the interpretation of the low-energy part of the
Raman spectra rather difficult.

4.2 Raman scattering by phonons in high-temperature

superconducting cuprates

In the field of Raman scattering by optical phonons, we investigated mainly the
superconductivity-induced changes of the phonon self-energy and their implications, namely
the variation of the widths and the frequencies of phonons. These changes arise from the
corresponding modifications of the electronic susceptibility (which in essence plays the role
of the phonon self-energy) when crossing the superconducting phase transition. They are
therefore particularly important for phonons (we consider only Γ-point phonons because
only these lead to inelastic light scattering) with frequencies in regimes where the transi-
tion from the normal to the superconducting state implies drastic changes of the real or
the imaginary part of the electronic susceptibility. This is the case for frequencies up to
approximately 2∆0.

We discovered [4.9] extremely strong superconductivity-induced phonon self-energy ef-
fects for two A1g phonons in HgBa2Ca3Cu4O10+δ (Hg-1234), which called for an explanation
by means of a theoretical model. Such theoretical model should be based on the calculated
electronic susceptibility for the normal and the superconducting states. This procedure,
however, is problematic, because there is little known about the normal state effects of
high-temperature superconducting cuprates. To circumvent this problem, we just assume
that the influence of the normal state on the phonons under consideration is small (see
Subsect. 3.5.3). The analysis of the experimentally determined spectra in the framework
of this model then leads to an estimate of the strength of the electron-phonon coupling.
Making use of the spectral function α2F (ω) from Eliashberg’s theory, we determined the
value of McMillan’s electron-phonon interaction parameter λ. This parameter characterizes
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the electron-phonon coupling strength in Eliashberg’s theory and determines the transition
temperature Tc. Our theory in connection with parameters taken from the experimental
spectra leads to an estimate of λ = 0.08 for the two phonons under consideration.

4.3 Outlook

• In view of the suggested contribution of magnetic excitations to the position and the
width of the pair-breaking peak in the B1g electronic Raman spectra of the high-
temperature superconducting cuprate Y-123, an attempt should be made to incorpo-
rate these excitations together with the coupling to the electronic excitations into the
theory of electronic Raman scattering.

• In this context, there is little known about the influence of the laser wavelength on
the Raman spectra. The application of the effective mass approximation neglects a
possible dependence of the Raman spectra on the laser frequency. From the point of
view of theory, this is hard to justify. Additional theoretical and experimental work
should be carried out to ascertain possible resonance effects.

• Another very important topic which was basically left out of consideration in this work
is the dependence of the Raman spectra on doping. It is already known for some years
that the positions of the A1g and B1g pair breaking peaks in the Raman spectra depend
strongly on the doping of the superconductor. For overdoped superconductors, the gap
amplitude is small and so is the Raman shift of the pair-breaking peaks. The A1g and
B1g peak-positions shift to larger frequencies as optimum doping is approached and
the transition temperature Tc approaches its maximum. When the doping is decreased
below the optimum value, the B1g peak continues to increase its frequency, but, at
the same time, it becomes very weak in intensity. For the A1g peak the situation is
different. It seems to resemble the behavior of the gap amplitude (which, according to
BCS-theory, is expected to be proportional to Tc), but also becomes smaller in terms
of intensity. A description of this phenomenon seems to be out of the scope of the
theory which we use for the deduction of the Raman efficiency.

• Another interesting path to take is the quantitative determination of the electron-
phonon coupling in high-temperature superconducting cuprates by describing it with
a deformation potential in the framework of a band-structure calculation based on the
LMTO-method. Such calculations have already been performed in the group of O. K.
Andersen [4.10], and the results should be linked to the experimentally determined
(e.g., by a fit of a measured phonon spectrum to the Fano lineshape) parameters.

• When modelling the Raman efficiency for Raman scattering by phonons which are cou-
pled to electron-hole excitations and which cause inelastic light scattering, the Fano-
Breit-Wigner equation (3.10) is usually applied. This formula, however, is based on
the strict k -independence of the relevant vertices. This is an assumption which could
be violated in the strongly anisotropic high-temperature superconducting cuprates.
For this reason it should be investigated whether and under which circumstances the
influence of the k -dependence of vertices on the lineshape is important.
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Appendix A

The theory of electron-phonon
coupling

A.1 Introduction

A.1.1 Hamiltonian

In this appendix, we develop a formalism for the description of electron-phonon coupling.
The Hamiltonian of a system consisting of electrons and ions (i.e., cores and core electrons)
can be written in the form

H = Hel +Hel−ion +Hion .

We focus on the last part, the ionic Hamiltonian Hion, first. This is composed of the
kinetic energy of the ions plus an ion-ion interaction part. Under the assumption, that the
interaction can be written as a sum over pair interactions,1 the ion Hamiltonian is given by

Hion = T +W =
∑

(n ,α)

1

2Mα
P2

nα +
1

2

∑

(n ,α)6=(n ′ ,α′)

W (Rnα,Rn ′α′) (A.1)

where Pnα and Rnα are the momentum and location of the ion α in the unit cell denoted
by n , respectively. The location Rnα is given by the location of the corresponding unit
cell Rn , plus the relative position ~τα of the ion α in the unit cell, plus the displacement Qnα

of the ion α in cell n from its equilibrium position. Therefore,

Rnα = R0
nα + Qnα = Rn + ~τα + Qnα , (A.2)

where R0
nα denotes the equilibrium position of the ion α in cell n .

The electron-ion interaction between the electronic system and the ions, represented
by Hel−ion, will be described by a pair potential2 Vα(Rnα, rν), thus

Hel−ion ≡ V =
∑

ν,(n ,α)

Vα(Rnα, rν) , (A.3)

1i.e., there are no core electron excitations and no overlap of the core electron ground states of two
different ions.

2We neglect exchange effects between core and conduction electrons.
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where ν numbers the electrons in the system. The potential Vα depends on the ion type α
to allow for differently charged ions.

The electronic Hamiltonian Hel will be considered in App. B. In this context, we will
also discuss the Born-Oppenheimer approximation.

A.1.2 The Hamiltonian Hion in the harmonic approximation

The interactions W in (A.3) and V in (A.1) will be written as power series in the displace-
ments Qnα, and discussed in the lowest nontrivial order in Qnα:

W (Rnα,Rn ′α′) = W
(0)
nα;n ′α′ + Qnα

~W
(0)
1;nα + Qn ′α′ ~W

(0)
2;n ′α′

+
1

2
Qnα

(

Ŵ
(0)
11;nα;n ′α′ + 2Ŵ

(0)
12;nα;n ′α′ + Ŵ

(0)
22;nα;n ′α′

)

Qn ′α′ +O(Q3) ,

where
W

(0)
nα;n ′α′ = W (R0

nα,R
0
n ′α′)

~W
(0)
i;nα;n ′α′ =

∂W (R1,R2)

∂Ri

∣
∣
∣
∣
R1=R0

nα;R2=R0
n′α′

Ŵ
(0)
ij;nα;n ′α′ =

∂W (R1,R2)

∂Ri∂Rj

∣
∣
∣
∣
R1=R0

nα;R2=R0
n′α′

The first term in zeroth order in the displacement Qnα, when summed over all ions, gives
the Madelung energy of the crystal. This is a constant, so we do not consider it any longer.
The terms linear in Qnα vanish, because ~W

(0)
i;nα vanishes in the equilibrium position. The

term in second order of Qnα is the first nontrivial one. It is clear that, when summed up
over all the ion sites, this term can be written as a quadratic form

W =
1

2

∑

nα;n ′α′

QnαΦ̂nα;n ′α′Qn ′α′ . (A.4)

The terms O(Q3) are neglected in the harmonic approximation. The matrix Φ̂nα;n ′α′ is called
dynamical matrix.

A.1.3 The electron-ion interaction Hel−ion in linear approximation

We write (A.3) in the form V =
∑

ν Ṽ (rν) and perform the linear approximation in Qnα,

Ṽ (r) =
∑

nα

Vα(Rnα, r) =
∑

nα

Vα(R0
nα, r) +

∑

nα

Qnα
∂Vα(R, r)

∂R

∣
∣
∣
∣
R=R0

nα

+O(Q2) . (A.5)

The first term in the series is the lattice-periodic potential for the electrons. This potential
is supposed to be contained in the electronic part Hel of the Hamiltonian, and therefore not
considered here. The second part then gives the linear electron-ion interaction

V =
∑

ν

Ṽ (rν) ; Ṽ (r) =
∑

nα

Qnα
∂Vα(R, r)

∂R

∣
∣
∣
∣
R=R0

nα

. (A.6)
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The potential Ṽ (r) is generated by the displacement of the ions from their equilibrium
positions and acts on the electrons.

After having established the ion-ion Hamiltonian in the harmonic approximation, as well
as the electron-ion interaction in linear approximation, we investigate these in the next two
sections in detail.

A.2 The bare phonon system

A.2.1 Hamiltonian

In this section we are discussing the pure phonon system in harmonic approximation, which
according to (A.1) and (A.4) is given by the Hamiltonian

Hion =
∑

nα

1

2Mα

P2
nα +

1

2

∑

nα;n ′α′

QnαΦ̂nα;n ′α′Qn ′α′ , (A.7)

where Pnα and Qnα are hermitian operators satisfying the commutation relations

[Pnα,Qn ′α′] = −i~δnn ′δαα′ 1̂ , [Pnα,Pn ′α′ ] = 0 , [Qnα,Qn ′α′ ] = 0 . (A.8)

The summations are over N = N1 ·N2 ·N3 points in real space (N is a finite number because
we use periodic boundary conditions (PBC)) and over the different ions α = 1, . . . , Nα per
unit cell, respectively. We now seek to decouple the 3 ·N ·Nα degrees of freedom in (A.7).

A.2.2 Symmetries of the dynamical matrix

Later on, we will have to diagonalize the dynamical matrix. As a preparative step, its
symmetry properties in real and Fourier space are discussed here. The symmetries which
are important for the diagonalization of the dynamical matrix are:

1. The translational symmetry of the crystal lattice implies that Φiα;i′α′(Rn ,Rn ′) depends

on space positions only through the difference Rn − Rn ′ , in other words, Φ̂nα;n ′α′ =

Φ̂n−n ′,α;0α′ . Consequently, the Fourier transform of the dynamical matrix

Φ̂q ;αα′ =
∑

n

Φ̂nα;0α′eiqRn (A.9)

depends only on one quasimomentum variable q . This is a discrete Fourier transfor-
mation, the sum involves N terms.

2. The fact that Φ̂nα;n ′α′ appears in a quadratic form in (A.7) implies the hermiticity

of Φ̂, that is,

Φ̂nα;n ′α′ = Φ̂T∗
n ′α′;nα

or Φ̂q ;αα′ = Φ̂T∗
−q ;αα′ .

(A.10)
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3. Take all displacements as equal, Qnα = Q . This corresponds to a translation of the
lattice as a whole and does not change the energy of the lattice. Consequently,

∑

n ,α;n ′,α′

Φ̂nα;n ′α′ = 0 ,

and Qnα = Q represents three linear independent eigenvectors of the dynamical ma-
trix; the corresponding eigenvalues are zero.

With respect to other displacements {Qnα}, the lattice is stable in its equilibrium
position (given by Qnα = 0), that is,

∑

n ,α;n ′,α′

QnαΦ̂nα;n ′α′Qn ′α′ > 0

for all {Qnα}, saved the case corresponding to the translation. We conclude that the
3 ·Nα ·N -dimensional dynamical matrix can be diagonalized and possesses 3 vanishing
eigenvalues. All other eigenvalues are positive.

4. If the lattice possesses an inversion symmetry, then the dynamical matrix is real and
its eigenvectors are real as well (see [A.1], Chap. 22).

A.2.3 Site-site decoupling

As a first step in the diagonalization of the Hamiltonian (A.7), we introduce the Fourier
representation of the operators in (A.8) by defining

Pqα =
1√
N

∑

n

Pnαe
+iqRn , Pnα =

1√
N

∑

q

Pqαe
−iqRn ,

Qqα =
1√
N

∑

n

Qnαe
−iqRn , Qnα =

1√
N

∑

q

Qqαe
+iqRn .

(A.11)

This is a canonical transformation, it leaves the commutation relations invariant, that is,
the commutation relations (A.8) are valid for the operators Pqα and Qqα as well. Note
that for this reason, the different signs in the exponent of the exponential functions in the
transformations for Qqα and Pqα are necessary. The operators Qnα and Pnα are hermitian,
whereas the operators Qqα and Pqα are not. Instead, the relations Q+

qα = Q−qα and
P+

qα = P−qα hold. We apply the transformation (A.11) to the Hamiltonian (A.7). This
yields

∑

n

P2
nα =

∑

q

P+
qαPqα ,

note that P+
qαPqα = P−qαP

+
−qα. Transforming the second part of the Hamiltonian is more

difficult. By a short calculation, we can show that

∑

nα;n ′α′

QnαΦ̂nα;n ′α′Qn ′α′ =
∑

q

Q+
qαΦ̂q ;αα′Qqα′
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and the Hamiltonian (A.7) becomes

Hion =
∑

q

hq , hq =
∑

α

1

2Mα

P+
qαPqα +

1

2

∑

αα′

Q+
qαΦ̂q ;αα′Qqα′

with [P+
qα,Qq ′α′ ] = −i~δqq ′δαα′ 1̂ , [P+

qα,Pq ′α′ ] = 0 , [Q+
qα,Qq ′α′ ] = 0

and Q+
qα = Q−qα , P+

qα = P−qα .

(A.12)

The Hamiltonian (A.7) which describes a system of 3 ·Nα ·N coupled degrees of freedom is
therefore reduced to N uncoupled systems of 3 ·Nα degrees of freedom each.3

A.2.4 Decoupling the remaining degrees of freedom for fixed q

The next step is to decouple the degrees of freedom in hq . We suppress the index q from
now on, introduce the index i to denote the cartesian components of vectors, and define the
non-singular transformation

Piα =
√

Mα

∑

λ

u∗iα;λpλ

Qiα =
1√
Mα

∑

λ

viα;λqλ

(A.13)

with i = 1, . . . , 3, α = 1, . . . , Nα, and consequently λ = 1, . . . 3Nα. There are 3 conditions
which determine the form of the matrices (uiα;λ) and (viα;λ), they are

(1) the transformation has to be a canonical one, that is, the commutation relations must
become

[p+
λ , qλ′ ] = −i~δλλ′ , [p+

λ , pλ′] = 0 , [q+
λ , qλ′ ] = 0 ,

(2) the sum
∑

α(1/2Mα)P+
α Pα has to transform to

∑

λ p
+
λ pλ, that is, the masses all be-

come 1 in the Hamiltonian, and

(3) the Hamiltonians hq and −hq have to become decoupled from each other by the trans-
formation.

Condition (1) can be shown in a short calculation to be equivalent to

∑

iα

uiα;λv
∗
iα;λ′ = δλλ′ (A.14)

which is a orthonormality relation for the matrices (uiα;λ) and (viα;λ). Another straight-
forward calculation shows that the second condition is fulfilled if and only if the closure
relation ∑

λ

u∗iα;λui′α′;λ = δii′δαα′ (A.15)

is valid. Using the orthogonality and closure relations, it is easily shown that

viα;λ = uiα;λ .

3Actually this is not true. Because of P+
qα = P−qα, the parts hq and h−q are coupled still and we

have N/2 uncoupled systems of 2 · 3 ·Nα degrees of freedom each.
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If we consider the uiα;λ as elements of a square matrix U , then the relations under consid-
eration imply that U is unitary.

Still the condition (3) has not been taken into account. This is our next step. We
look for a unitary matrix U with the property that the transformation (A.13) diagonalizes
the Q+Φ̂Q term in (A.12). This term becomes

1

2

∑

λλ′

(
∑

iα;i′α′

1√
MαMα′

Φiα;i′α′u∗iα;λui′α′;λ′

)

q+
λ qλ (A.16)

where Φiα;i′α′ =
(

Φ̂α;α′

)

ii′
, and the expression in parentheses has to be proportional to δλλ′

for the condition (3) to hold.

A.2.5 Eigenvalue equation

To find a unitary matrix U which has the property that the expression in parenthesis
in (A.16) becomes proportional to δλλ′ , we solve the eigenvalue equation

∑

α′

1√
MαMα′

Φ̂αα′eα′ = ω2eα . (A.17)

Because in general Φiα;i′α′ is a hermitian matrix, the eigenvalue equation yields a set of
eigenvectors eα′;λ and real eigenvalues ω2

λ. As already discussed, the stability of the lattice
in the equilibrium state forces the quadratic form (A.4) to be positive definite with the
exception of the three acoustic Γ-point modes for which they are zero. Therefore, (with this
exception) the eigenvalues of Φ are positive. The eigenvectors are complex in general. The
vectors eα′ will be orthogonal4 We normalize these by

∑

α

e∗
α;λeα;λ′ = δλλ′ .

Then, as a consequence of the eigenvalue problem, the closure relation (A.15) reads
∑

λ

(e∗
α;λ)i(eα′;λ)i′ = δαα′δii′

and is satisfied automatically. Now we choose5

uiα;λ = (eα;λ)i (A.18)

for the matrix U . Then the unitarity of U is fulfilled, and (A.16) simplifies to
∑

λ ω
2
λq

+
λ qλ.

As a result, the Hamiltonian (A.12) is reduced to

H =
∑

q

hqλ , hqλ =
∑

α

1

2

(
p+
qλpqλ + ω2

qλq
+
qλqqλ

)
. (A.19)

Note that the modes defined by the pairs of quantum numbers (q , λ) and (−q , λ) are still
coupled because q+

q = q−q .

4except for cases with degeneracy, in which the vectors can be orthogonalized.
5By (v)i we denote the ith cartesian component of the vector v .
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A.2.6 Creation and destruction operators

The introduction of creation and destruction operators for phonon modes is performed now
in close analogy to the case of the one-dimensional harmonic oscillator (1DHO). Notice again
that the difference of the 1DHO system and the system under consideration here is that the
two modes described by hqλ and h−qλ are coupled. Nevertheless, the form of the creation
and destruction operators is similar, they are given by

a+
qλ =

1
√

2~ωqλ

(
ωqλq

+
qλ − ip+

qλ

)

aqλ =
1

√
2~ωqλ

(
ωqλqqλ + ip+

qλ

)

qqλ =

√

~

2ω

(
aqλ + a+

−qλ

)

pqλ = −i
√

~ω

2

(
aqλ − a+

−qλ

)
.

(A.20)

Using the commutation relation of the operators qqλ and pqλ, Eq. (A.20) and the relations
p+
qλ = p−qλ, and analogous for qqλ, we can show that

~ωqλ

(

a+
qλaqλ +

1

2

)

=
1

2

(
p+
−qλp−qλ + ω2

qλq
+
qλqqλ

)
+

1

2
(qqλpqλ − q−qλp−qλ) .

and, therefore,

hqλ + h−qλ = ~ωqλ

(

a+
qλaqλ +

1

2

)

+ (q ↔ −q) .

As a result, the diagonalized ion-ion Hamiltonian in the harmonic approximation can be
written in the form6

Hion =
∑

qλ

~ωqλ

(

a+
qλaqλ +

1

2

)

, (A.21)

where the operators a+
qλ and aqλ fulfill the commutation relation

[aqλ, a
+
qλ] = δqq ′δλλ′ . (A.22)

The pair (q , λ) denotes one single phonon mode with the energy ~ωqλ, the frequencies ωqλ are
obtained by solving the eigenvalue problem (A.17). In an occupation number representation,
the operators a+

qλ and aqλ create and annihilate a phonon, respectively.

A.3 The electron-phonon interaction

A.3.1 Hamiltonian

After having discussed in length the phonon system, we are ready to attack the electron-
phonon interaction. The electron-phonon interaction is given in linear approximation by the
expression (A.6),

Hel−ion = V =
∑

ν

Ṽ (rν) ; Ṽ (r) =
∑

nα

Qnα ∇RVα(R, r)|R=R0
nα

. (A.23)

6The q -sum runs over all q in the first BZ, because the operators Pnα and Rnα are defined only at lattice
sites.

c© 1999, Thomas Strohm, www.thomas-strohm.de



138 APPENDIX A. THE THEORY OF ELECTRON-PHONON COUPLING

where the ν-sum runs over all electrons, and the other sum over all ions. Note that in
general, Ṽ (r) is not lattice-periodic.

We use the translational invariance in the form Vα(R, r) = Vα(R − r), note that Vα(r)
has to obey periodic boundary conditions, and introduce its Fourier transform7

Vα(r) =
1

V

∞∑

k

eikrVαk ,

where the crystal volume is denoted by V . Introducing also the Fourier transform Ṽk of Ṽ (r),
we can rewrite Eq. (A.23) as

Ṽk = ik
∑

nα

VαkQnαe
−ikR0

nα , (A.24)

the inverse lattice vector k is not restricted to the first Brillouin zone. The sum in (A.24)
is invariant upon the substitution k → k + G (G is a reciprocal lattice vector), but Vkα is
not. Writing R0

nα = Rn + ~τα and using the definition of Qqα in (A.11), we obtain

∑

nα

VαkQnαe
−ikR0

nα =
√
N
∑

α

VαkQk̄αe
−ik~τα

where we utilized the symbol k̄ to denote the mapping of k into the first Brillouin zone by
adding an appropriate reciprocal lattice vector.

Using (A.13) and (A.18), the coupling (A.24) can be expressed in the form

Ṽk = i
√
N
∑

αλ

1√
Mα

Vαke
−ik~τα

(
k · eα;k̄λ

)
qk̄λ (A.25)

and two properties of this coupling becomes obvious:

• A phonon with quasimomentum q couples to all the Fourier components Vαk of the
electron-ion potential whose wave vectors k map to q in the first Brillouin zone (i.e.,
to all Vα,q+G , where G is a reciprocal lattice vector).

• If we neglect the “Umklapp coupling” (i.e., assume k = k̄), the product k ·eα;k̄λ shows
that “pure” transverse phonons do not couple to the electron system.

As a final step, we carry out the second quantization of V ≡ Hel−ion. The second quantized
electron-ion interaction is given by

V =
∑

nk ;n′k ′

〈n′k ′|Ṽ (r)|nk〉c+n′k ′cnk (A.26)

where the state |nk〉 corresponds to a Bloch state ψnk (r) = unk(r) exp(ikr), and cnk anni-
hilates a Bloch electron with wavenumber k from band n.

7The k -sum run over all values of k which are compatible with the PBC, not only those in the first BZ.
We indicate this by putting the ∞ sign on top of the sum symbol.
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The matrix element in (A.26) can be written in the form

〈n′k ′|Ṽ (r)|nk〉 =
1

V

∞∑

q

Ṽq ·
1

V

∫

crystal

d3r ei(k−k ′)ru∗n′k ′(r)unk(r)eiqr

≡ 1

V

∞∑

q

Ṽq · αn′k ′;nk δk ′,k+q+G .

This equation demostrates that a nonvanishing q -component in the potential Ṽ (r), which
the electrons experience, induces electronic transitions from |nk〉 to |n′k ′〉, where k ′ =
k +q +G, and G is chosen in such a way that both, k and k ′ lie in the first Brillouin zone.

Making use of (A.25), the matrix element becomes

〈n′k ′|Ṽ (r)|nk〉

=

∞∑

q

i

Vc

√
N

∑

αλ

1√
Mα

Vαqe
−iq~τα (q · eα;qλ) ·

√

~

2ωqλ

(
a+
−qλ + aqλ

)

αn′k ′;nkδk ′ ,k+q+G

=
i

Vc

√
N

∑

qλ

√

~

2ωqλ
αn′k ′;nk

[
∑

α,G

1√
Mα

Vαq+Ge
−i(q+Gvec)~τα ((q + G) · eα;qλ)

]

· δk ′,k+q+G

(
a+
−qλ + aqλ

)

≡
∑

qλ

gqλ
n′nkδk ′ ,k+q+G

(
a+
−qλ + aqλ

)

(A.27)

where the unit cell volume V/N = Vc has been introduced. Equation (A.27) defines the
electron-phonon vertex gqλ

n′nk and relates it to the electron-ion potential Vα. The electron-

ion vertex gqλ
n′nk corresponds to the amplitude for the electron performing a transition from

state |nk〉 to state |n, k − q〉 while creating a phonon with quantum numbers (q , λ) (or
annihilating a phonon with quantum numbers (−q , λ)).

The second quantized electron-ion interaction finally becomes

Hel−ion =
∑

n′,n,k ;qλ

gqλ
n′nk c

+
n′,k+qcn,k

(
a+
−qλ + aqλ

)
,

the electron-phonon vertex is denoted by gqλ
n′nk ; the operators c (c+) annihilate (create) an

electron, whereas the operators a (a+) annihilate (create) a phonon.

A.3.2 Different mechanisms

Equation (A.27) allows the calculation of the electron-phonon vertex for a known electron-ion
potential Vα. Usually, however, the electron-ion potential is not known, and one has to rely
on certain approximation schemes, the so-called electron-phonon coupling mechanisms. The
most important of these are the deformation potential coupling, the piezoelectric interaction,
and the polar coupling (Fröhlich interaction).
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The deformation potential coupling involves the coupling of long-wavelength longitudinal
acoustic or optical phonons to the electrons. For the case of acoustic phonons, the corre-
sponding displacements of the ions are closely related to a macroscopic deformation of the
crystal. Deformations change the band structure; the amount of deformation of the band
structure for a given static lattice distortion is known as deformation potential (see [A.2],
Subsect. 3.3.1, and [A.3], Chap. 1.3C). In the case of optical phonons, the corresponding
static displacements are called frozen phonons. These configurations are often used in con-
junction with ab initio LDA- or semiempirical methods to calculate the electron-phonon
coupling.

In piezoelectric crystals, stress induces a macroscopic polarization field. This is possible,
however, only for crystals which lack an inversion center. Acoustic phonons are related to
stress and therefore produce a macroscopic electric field in the crystal. This macroscopic
electric field is equivalent to a potential that acts on the electrons (see [A.2], Subsect. 3.3.3,
and [A.3], Chap. 1.3D). This type of interaction is known as piezoelectric interaction.

In polar crystals with at least 2 atoms per unit cell, long-wavelength longitudinal optical
phonons can induce a macroscopic polarization. The macroscopic electric field which is
related to the polarization couples the phonon to the electronic system. This effect is known
as polar coupling or Fröhlich interaction.
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Appendix B

The electronic structure of crystals

B.1 The Hamiltonian of crystals

B.1.1 Electrons and phonons

The Hamiltonian of the electron-ion system was already presented in Sect. A.1, where the
discussion of the electronic part was postponed. This discussion is our concern here.

The electrons in an electron-ion system interact with other electrons and with the ions
also. Therefore, the electronic part Hel of the Hamiltonian H of the electron-ion system
depends on the locations1 {Rnα} of the ions, which correspond to lattice sites R0

nα plus
small2 time-dependent displacements Qnα(t). This dependence couples the electronic system
to the ionic part of the Hamiltonian H, and renders a solution of the electronic Hamiltonian
(e.g. the calculation of the electronic band structure) without solving at the same time
the other parts of H impossible. Therefore, an approximation is in order. This is the
Born-Oppenheimer- or adiabatic approximation, which for the electronic part Hel of the
Hamiltonian fixes the ions to their corresponding lattice sites,3 that is, takes Qnα = 0. The
electron-ion interaction (as described in Eq. (A.3)) corresponds to a lattice-periodic static
potential (the first term in the sum of (A.5)) and will be considered as a part of Hel. If we
use second quantization and electron field operators Ψ(r), the electronic Hamiltonian can
be rewritten as

Hel = T + U + V with

T =
1

2

∫

∇Ψ†(r)∇Ψ(r) d3r

U =
1

2

∫

Ψ†(r)Ψ†(r ′)u(r − r ′)Ψ(r ′)Ψ(r) d3r d3r′

V =

∫

v(r)Ψ†(r)Ψ(r) d3r

(B.1)

where U corresponds to the electron-electron interaction and V to the lattice-periodic po-
tential caused by the presence of the charged ions.

1For the notation refer to Sect. A.1.
2The displacements are small with respect to the lattice constant.
3Note again that this is only performed for the electronic part of the Hamiltonian!
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Equation (B.1) is the starting point for the calculation of the electronic band structure.

B.2 Density functional theory and the local density

approximation

The LMTO calculations are performed to solve a one-electron self-consistent Schrödinger
equation called the Kohn-Sham equation, which follows from the Hohenberg-Kohn density
functional theory. In this section we give a short overview of the derivation.

B.2.1 Density functional theory

The density functional theory (DFT), pioneered by Hohenberg and Kohn [B.1], establishes a
relation between the ground state density n0(r) of the (electronic) Hamiltonian (B.1) and a
potential4 v(r) needed to realize this ground state density, and sets up a variational principle
for the calculation of the ground state density n0(r) of (B.1) for a given potential v(r).

We start with the Hamiltonian Hel in (B.1) and denote its ground state by |0〉. The
electron density in the ground state is given by

n0(r) = 〈0|Ψ†(r)Ψ(r)|0〉 .

The Hamiltonian (B.1) is a functional of the external potential v(r), therefore the ground
state |0〉, and also the ground state density n0(r), are functionals of the external poten-
tial v(r). So far, this is trivial.

Hohenberg and Kohn show now that the reverse is also true, that is, that v(r) is a
functional of the ground state density n0(r) (up to an additive constant in the external
potential). If we fix the ground state density n0(r), the potential v(r) needed to realize
this density is fixed as well.5 Therefore, there is a one-to-one correspondence between the
external potential v(r) (up to a constant) in the Hamiltonian (B.1) and the related ground
state density n0(r).

DFT I: Between the potential v(r) in the Hamiltonian (B.1) and the related ground state
density n0(r) there is a one-to-one correspondence (up to an additive constant in v(r)).

As a consequence, a given ground state density n0(r) fixes the Hamiltonian Hel in (B.1)
by determining the potential v(r). The Hamiltonian then can be solved for the ground
state |0〉. Hence, the ground state |0〉 is also a functional of n0(r). This is by no means a
trivial statement! An electron density n(r) does not determine the state |ψ〉 of an electron
system such that n(r) = 〈ψ|Ψ†(r)Ψ(r)|ψ〉. But it does so, if the density is known to be the
ground state density.

4The potential v(r) defines the operator V in (B.1). It has to be thought of as the potential arising from
the interaction of the electrons with the static ions. The potential v(r) an “external” potential because it
arises from the interaction with particles or fields which are not contained in the Hamiltonian (B.1).

5In an ironic way, Hohenberg and Kohn [B.1] state in their footnote 12:“We cannot prove whether an

arbitrary positive density n′(r),. . . , can be realized by some potential v′(r). . . . and we believe that in fact

all, except some pathological distributions, can be realized”.
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The fact that the ground state |0〉 and the Hamiltonian are functionals of the ground
state density allows us to define the kinetic and interaction energies as functionals of the
ground state density

F [n(r)] = 〈0|T + U |0〉 (B.2)

and V [n(r)] = 〈0|V |0〉, which evaluates to

V [n(r)] =

∫

v(r)n(r) d3r .

Note that the potential v(r) by itself is also a functional of the ground state density (DFT
I ). The total energy is given by

E[n(r)] = F [n(r)] +

∫

v(r)n(r) d3r . (B.3)

Now, Hohenberg and Kohn define another functional6 Ev[n(r)] by

Ev[n(r)] = F [n(r)] +

∫

v(r)n(r) d3r , (B.4)

for a fixed potential v(r). This functional is defined for any density n(r), it does not have
to be related to the potential v(r). Is is clear that for the ground state density n0(r)
which corresponds to the fixed potential v(r), the energy Ev[n0(r)] is equal to the en-
ergy E[n0(r)] which is the ground state energy. Then they show that the minimization of
the functional Ev[n(r)] yields the ground state density related to v(r), provided that the
minimization is done in the subspace given by

∫

n(r) d3r = N = fixed , (B.5)

that is, for a fixed number of particles.

DFT II: The functional Ev[n(r)] in (B.4) assumes its minimum value for the correct ground
state density n = n0[v(r)].

The two theorems (DFT I ) and (DFT II ) are the basic statements of density functional
theory.

If the functional F [n] were known, the problem of determining the ground state energy
and density for a given potential would be relatively easy because we just would have to
minimize the functional (B.4). The complexity of the many-body problem within density
functional theory is hidden in the determination of F [n] in (B.2).

6It is very important to understand the difference of the functionals E[n] and Ev [n]. The first is only a
functional of n(r). The quantity v(r) in (B.3) is determined by v = v[n]. In the functional Ev[n], however,
the quantity v is a parameter.
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B.2.2 Kohn-Sham equations

The starting point for the derivation of the Kohn-Sham equations [B.2] is the Hohenberg-
Kohn energy functional (B.4). We shall now try to specify the free energy F [n] further. First
of all the Coulomb energy of the electrons is included in F [n]. We separate this contribution
by writing

F [n(r)] =
1

2

∫
n(r)n(r ′)

|r − r ′| d3r d3r′ +G[n(r)]

and call the term F [n] −G[n] containing the integral the Hartree term.

The functional G[n(r)] still contains the kinetic energy, the parts of the correlation
energy which are not contained in the Hartree term, and also the exchange energy which is
approximated by the Fock term in the Hartree-Fock equations.

We will also extract an approximation for the kinetic energy, namely the kinetic energy Tni

of a system of non-interacting electrons of density n(r), out of F [n(r)], and will see later why
this is useful. The rest, that is, the functional F [n] minus the Hartree term minus the kinetic
energy Tni of a non-interacting system, will be called the exchange and correlation energy
and be denoted by Exc. The kinetic energy Tni and the energy Exc are both functionals of
the density n(r) Therefore, we write

G[n] = Tni[n] + Exc[n] .

Using this form for the energy functional (B.4) we perform the minimization by introduc-
ing a variation to the density n(r) → n(r)+δn(r) taking into consideration the conservation
of particles which is expressed by the condition

∫

δn(r) d3r = 0 .

In this way we arrive at the equation

∫

δn(r)

{

v(r) +

∫
n(r ′)

|r − r ′| d
3r′ +

δTni[n(r)]

δn(r)
+
δExc[n(r)]

δn(r)

}

d3r = 0 , (B.6)

which requires the expression in the curly brackets to vanish identically, because the varia-
tion δn(r) is arbitrary (just the particle conservation (B.5) has to be fulfilled, this can be
accomplished by the introduction of a Lagrangian multiplier µ).

Consider now a system of non-interacting particles. For such system, the Hartree term
as well as the exchange and correlation energy Exc[n] vanish. Just the kinetic energy Tni,
which now corresponds to the exact kinetic energy, and the external potential v(r) are left
in (B.6). Equation (B.6) now requires

δTni[n(r)]

δn(r)
+ v(r) = 0 .

The solution n(r) of this equation corresponds to the ground state density of a system of
non-interacting particles in the external potential v(r). Still we do not know the explicit
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form of the kinetic energy Tni [n], but in the case of the non-interacting electrons we can
calculate the ground state density n0(r) also by solving the Schrödinger equation

[

−1

2
∇2 + v(r)

]

ψi(r) = εiψi(r) , (B.7)

and the density to be determined is given by

n0(r) =

N∑

i=1

|ψi(r)|2 (B.8)

where the sum comprises all single-particle states which are occupied in the ground state of
the N -particle system. To solve (B.6) we just perform the replacement

v(r) → veff(r) = v(r) +

∫
n(r ′)

|r − r ′| d
3r′ +

δExc[n(r)]

δn(r)
≡ v(r) + vH(r) + vxc(r) (B.9)

in (B.7) and consider the interacting system to be a non-interacting system in an effective
potential veff(r). The resulting equation is called Kohn-Sham equation. The fact that the
effective potential veff(r) is a functional of the ground state density n0(r) requires us to
carry out the calculation self-consistently. This self-consistent calculation is performed in
the following steps:

1. Choose an initial potential vin(r) to be used as an approximation to the effective
potential veff(r) instead of v(r) in the Schrödinger equation (B.7).

2. Solve the Schrödinger equation (B.7).

3. Calculate the ground state density given by (B.8).

4. Determine the Hartree-part of the new potential by solving the Poisson equation
∇2vH(r) = −4πe · n0(r) or by using the integral in (B.9).

5. Compute the exchange-correlation potential vxc(r) (how this is performed is discussed
in Subsect. B.2.3).

6. Then, according to (B.9), a new approximation to the potential veff(r) is obtained by
vnew(r) = vin(r) + vH(r) + vxc(r). If the new potential vnew(r) is equal to the old
one vin(r) to within some specified accuracy, self-consistency has been achieved. Oth-
erwise use vnew(r) as the new potential veff(r) for the Schrödinger equation. Proceed
with step 2.

In essence, (B.9) and (B.7) specify a fixed-point problem of the form

veff(r) = Φ[veff(r)] . (B.10)

We assume that this problem possesses a unique solution7 (called fixed-point), and that
the iterative solution starting with veff = vin converges to the fixed-point, which is the

7Up to a constant.
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self-consistent periodic potential veff(r). This potential must be used in the Schrödinger
equation (B.7) in order to get single-particle wavefunctions and energies which are appro-
priate for the description of the ground state of the many-body problem (B.1).

Note that the two conclusions (DFT I ) and (DFT II ) of density functional theory apply
to ground state properties only. In order to develop a theory of the optical properties of
a solid, we need to know the excited states in addition to the ground state. Interpreting
the eigenvalues of the Kohn-Sham equation as excitation energies, however, is problematic.
The ground state energy is not given by the sum of all εi over all occupied states, there are
also contributions from the Hartree term and the exchange and correlation term. In the
Hartree-Fock theory, the situation is similar. There, however, Koopman’s theorem allows
for an interpretation of the εi as excitations energies of the system. But the requirements for
the validity of Koopman’s theorem are not given in density functional theory. Under certain
circumstances, however, we may interpret the εi as excitation energies in density functional
theory also (see [B.3], Sect. VI).

B.2.3 The local density approximation (LDA)

Step 5 in the algorithm for solving the Kohn-Sham equation discussed above requires further
elaboration. The exchange and correlation energy functional Exc[n(r)] is still unknown.

We will assume that the contribution of an infinitesimal volume element d3r at r to the
exchange and correlation energy just depends on the density at r . This is called the local
density approximation (LDA). The exchange and correlation energy functional Exc[n(r)]
then assumes the form

Exc[n(r)] =

∫

εxc(n(r)) d3r ,

the exchange-correlation density εxc(n) has to be obtained, for instance, from calculations
based on a homogeneous electron gas (interacting electrons without periodic potential, also
known as jellium model). Estimations for εxc(n) can be found in [B.4].

B.3 Traditional methods for solving the Schrödinger

equation

In the last sections we reduced the calculation of the ground state of the full electron-ion
problem of a crystalline solid to a Schrödinger equation (B.7) for one electron moving in
a lattice-periodic potential v(r) (this potential corresponds to the solution veff(r) of the
fixed-point problem (B.10)). This equation is used for the determination of the electronic
band structure. The solution of this equation is the problem which we are tackling now.

A short description of the traditional methods [B.5, B.6] for solving the problem of an
electron moving in a lattice-periodic potential, that is, for the calculation of the electronic
band structure enables us to put the LMTO-method into the appropriate framework. Em-
phasising the advantages and disadvantages of the traditional methods also allows for the
specification of the properties that a better method should show.

The traditional methods can roughly be divided into methods with fixed basis functions
and methods which work by matching partial waves. The first group is constituted by the
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plane wave method and the method of linear combination of atomic orbitals (LCAO), also
called the tight-binding method. In the second group, the most important members are
the cellular method, the augmented plane wave (APW) method and the Korringa-Kohn-
Rostocker (KKR) method.

B.3.1 Plane wave method

In the plane wave method [B.7], the wave function which is to be determined is expressed as
a Fourier series (i.e., as an expansion into plane waves) which takes into account the trans-
lational symmetry of the crystal lattice. The boundary condition is the periodic boundary
condition for the crystal. The discrete nature of the translation symmetry has the conse-
quence that the Schrödinger equation for the wave function ψ(r) =

∑

q cq exp(iqr) couples
a coefficient cq to all coefficients cq+K (where K is a reciprocal lattice vector) via the Fourier
component vK of the periodic potential v(r) in which the electron moves.

The wave functions for energies in the interesting range oscillate strongly in a region
close to the ion cores and oscillate very weakly (or even decay) in the region between the
ions (called interstitial region). Consequently, a large amount of plane waves is needed in
order to get quantitatively good results.

To find a solution to this problem, we explicitly distinguish between core electrons, which
are well localized at the lattice sites, and valence electrons, which also may be located in the
interstitial region.

In the orthogonalized plane wave (OPW) method [B.7], the core electrons are described
by the corresponding wave functions ϕnlm(r) of the free atom. Taking these wave functions
at each of the lattice sites R, ϕnlm(r −R), wave functions which obey Bloch’s theorem (i.e.,
transform according to an irreducible representation k of the translation group of the crystal)
can be constructed. This is accomplished by the Bloch sum ϕk

nlm(r) =
∑

k exp(ikR)ϕnlm(r−
R).

Then the plane waves which are used in the expansion of the wave functions ψ(r) are
orthogonalized to the core states ψk

nlm(r). The resulting wave functions are called orthogo-
nalized plane waves and are used as a basis set of functions for solving Schrödinger’s equation.
By virtue of the orthogonalization to the core states, the OPWs oscillate rapidly in the core
region. As a result, the OPWs are much better suited for expanding ψ(r) than plane waves
are. The OPW method therefore diminishes the problem with the different behavior of ψ(r)
close to the ion cores and in the interstitial region.

The pseudopotential method is based on ideas of the OPW method. The plane waves
in the OPW method are replaced by the exact valence wave functions ψv

k (r) which are
written as a superposition φk(r) of plane waves and subsequently orthogonalized to the
exact core states ψc

k (r). The superposition φk (r) of plane waves can be determined from a
Schrödinger equation with a modified potential, the pseudopotential. The pseudopotential
is the sum of the actual periodic potential v(r) and a potential V R (see [B.5], Eq. (11.34))
which takes the difference between φk (r) and ψv

k (r) into account. Strictly, V R is an operator
(i.e., nonlocal), but can be approximated by a function V R(r) (i.e., a local operator) under
certain circumstances.

The method relies on the assumption that the pseudopotential does not vary as strongly
as the potential v(r) and, as a consequence, expanding φk(r) into a series of plane waves
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should be less problematic than doing so with ψv
k (r). To get the exact valence wave func-

tions ψv
k (r), the wave functions φk (r) have to be orthogonalized to the core wave func-

tions ψc
k (r).

B.3.2 Tight-binding method

The LCAO or tight-binding method is suited for the description of well localized states. It
considers the periodic potential as the atomic potential of a single atom plus a perturbation
which corresponds to the periodic potential minus the single atom potential. Consequently,
it uses the eigenfunctions ψnlm(r) of atomic orbitals (bound states) with an energy Enlm

of the free atom as the fixed basis and expresses the wave function for an electron in the
crystal in the form of a Bloch sum

ψk (r) =
∑

R

eikR
∑

nlm

ak
nlmψnlm(r − R) (B.11)

To determine the coefficients ak
nlm one either substitutes ψk (r) into the Schrödinger equation,

or uses a variational technique to eventually end up with a linear eigenvalue problem of the
form

(Ĥk − Ek Ôk )a
k = 0 .

The matrix elements of the matrices Ĥk and Ôk carry indices (nlm;n′l′m′) of the atomic
orbitals ψnlm. The matrix Ĥk contains matrix elements of the Hamiltonian (B.7) with bound
state wave functions from the same lattice site, and Ôk such elements with bound state wave
functions from different lattice sites (overlap integrals).

The energies Ejk of the electronic states ψjk (r) (Bloch states) are given by the secular
equation

det(Ĥk − Ejk Ôk) = 0

in the form of eigenvalues of a linear eigenvalue equation.

B.3.3 Cellular method

Instead of treating the whole crystal with the Schrödinger equation, it is also possible to just
consider the potential in one primitive lattice cell and to take into account the translational
invariance of the potential by a boundary condition such as, for instance, the Bloch relation

ψk (r + R) = eikRψk (r) . (B.12)

Such methods are called cellular methods.
The partial wave approach of Wigner and Seitz [B.8] is a cellular method. It extends

the spherical symmetry of the one-atom potential up to the boundaries of the Wigner-Seitz
cell (WSc)8 and approximates the wave functions for the problem of one isolated muffin-tin
potential by

ψlm(E, r) = Θ(r) · ilYlm(er )ψl(E, |r |) .
8This implies that the potential is not differentiable anymore at the boundary of the WSc!
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The wave functions ψk (r) of the crystal are approximated by a linear combination of partial
spherical waves

ψk (r) =
∑

R

eikR
∑

lm

bklmψlm(E, r − R) ,

where ψl(E, r) is the solution of the radial Schrödinger equation for the given potential
and Θ(r) is a function which is 1 inside the WSc and vanishes outside. For a given value
of k , the band energies Ej(k) then are the energies for which coefficients bklm exist such that
the wave function ψk (r) is continuous and differentiable at the WSc boundary and obeys the
boundary condition (B.12). The main disadvantage of the method at hand is the difficulty
to fulfill the boundary condition.

B.3.4 Augmented plane wave (APW) method

The disadvantage of the Wigner-Seitz partial wave method is circumvented in Slater’s [B.9]
augmented plane wave (APW) method. This is also a cellular method but it uses muffin-
tin spheres. A muffin-tin (MT) sphere is a sphere centered around a lattice atom which is
completely contained in the WSc. Inside the MT sphere, the potential is approximated to
have spherical symmetry, and the wave function is expanded into partial spherical waves as
in the Wigner-Seitz method. Outside the MT sphere, in the interstitial region, the potential
is approximated to be constant or only slowly varying, and the wave function is expanded
into plane waves. The boundary conditions are formulated on the MT sphere, not on the
boundary of the WSc. Due to the fact that the MT sphere as well as the potential inside
the MT sphere are spherically symmetric, the boundary conditions are much easier to apply
than in the case of the Wigner-Seitz cellular method.

B.3.5 Korringa, Kohn, and Rostocker (KKR)

The method of Korringa, Kohn, and Rostocker [B.10, B.11] (KKR) requires the potential in
the interstitial region to be constant. Then the Schrödinger equation can be solved exactly
with phase-shifted spherical waves in this region. The boundary condition (B.12) can be
formulated as complete destructive interference of the tails of all the other atoms (at R 6= 0)
in the MT cell of a given atom at R = 0 (“tail cancellation”).

Due to the fact that partial waves are energy-dependent, the boundary conditions for
all the partial wave methods correspond to eigenvalue equations which are nonlinear in the
energy, and therefore very complicated. This is the main disadvantage of the Wigner-Seitz-,
the APW-, and the KKR method.

B.4 The LMTO-method

B.4.1 Outline

The LMTO-method [B.12] combines some of the most advantageous features of the methods
presented above.

Like the KKR-method, the LMTO-method uses a muffin-tin potential which is constant
in the region outside the muffin-tin sphere. The solutions to the Schrödinger equation
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for the single-muffin-tin problem, which are partial waves, then can be given exactly in the
interstitial region, and the boundary conditions (formulated on the MT sphere) are relatively
simple.

The LMTO-method uses a variational principle to finally end up with a secular equa-
tion which is used to determine the wave functions corresponding to Bloch states and the
band energies of the crystal. As a basis set of functions, the states constructed with a
Bloch sum (B.11) of partial waves could be used. This choice, however, has two important
disadvantages.

We take a spherically symmetric potential v(r) with v(r) → 0 for r → 0. Then the
normalization of the partial waves is different (a) for bound states with E < 0, (b) for
nonbound states with E < 0, and (c) for states with E > 0 (scattering states). Note that all
these states have to be included in the calculation in order to be able to calculate the band
structure of the crystal for arbitrary energy regimes.

The other disadvantage is related to the energy-dependence of the partial waves. The
consequence of this is that the eigenvalue problem which corresponds to the secular equation
is nonlinear.

The definition of the energy-independent muffin-tin orbitals (MTO) and their application
in constructing the Bloch sum overcomes all these problems. In particular, the eigenvalue
problem becomes linear (this property is the origin of the ‘L’ in ‘LMTO’).

B.4.2 The LMTO muffin-tin potential

The construction of the energy-independent muffin-tin orbitals which are used as a basis
set in the LMTO-method starts with the definition of a muffin-tin potential. The MT
potential is spherically symmetric, vMT (r) = vMT (r). Outside of the muffin-tin sphere,
which is centered around the ion and possesses a radius RMT , the MT potential is constant.
Therefore,

v(r) =

{

vMT (r) + vMTZ for r ≤ RMT

vMTZ for r ≥ RMT

with vMT (RMT ) = 0. We write κ2 = E − vMTZ for the energy (with respect to vMTZ ) of
waves propagating outside the MT sphere.

B.4.3 The partial-wave solution

Now we look for the solutions of the Schrödinger equation for an electron moving in an
isolated muffin-tin potential vMT (r). These are given by the partial waves

ψlm(E, r) = ilYlm(er) · ψl(E, r) ,

where the radial wave function ψl(E, r) is a solution of the radial Schrödinger equation

[

− d2

dr2
+
l(l + 1)

r2
+ vMT (r) − κ2

]

rψl(E, r) = 0 . (B.13)

If the potential vMT (r) increases slower for r → 0 than the term proportional to r−2 does,
then the two linearly independent solutions of (B.13) are proportional to rl and r−(l+1),
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respectively. As we are not interested in the non-analytical solution, a boundary condition for
ψl(E, r) is specified herewith: ψl(E, r) has to be analytic at r = 0. For an arbitrary muffin-
tin potential, the radial wave function inside the muffin-tin sphere has to be determined
numerically. Outside the sphere, the muffin-tin potential vanishes and (B.13) becomes the
Helmholtz equation which for the case κ2 > 0 (the scattering case) possesses the spherical
Bessel jl(κr) and Neumann nl(κr) functions as linearly independent solutions. The Bessel
function is ∼ rl for r → 0 and the Neumann function is ∼ r−(l+1) in the same limit. Both
functions are regular for r 6= 0. Consequently, the solution for the radial wave function
outside the sphere is a linear combination of the spherical Bessel and Neumann functions,
and the coefficients have to be chosen as to guarantee continuity and differentiability of the
radial wave function at the MT sphere at r = RMT . Eventually, the partial wave is given by

ψlm(E, r) = ilYlm(er) ·
{
ψl(E, r) if r ≤ RMT

κ[nl(κr) − cot(ηl)jl(κr)] if r ≥ RMT
(B.14)

where the phase ηl is specified by the requirement of continuity and differentiability at the
muffin-tin sphere boundary. The necessary match of the values of the function at the sphere
and the match of the first derivatives is usually replaced by the demand for the matching of
the logarithmic derivatives (see [B.6], Eq. (5.11)).

For the case of κ2 < 0 (the bound case), the solutions to the Helmholtz equation are

the Hankel functions h
(1)
l and h

(2)
l of the first and second kind. In (B.14), the Neumann

function nl has to be replaced by the Hankel function h(1), and the Bessel function jl has
to be replaced by the Hankel function h(2). Clearly, these functions have the asymptotic
form ∼ exp(−|κ|r)/|κ|r for the first kind, and ∼ exp(|κ|r)/|κ|r for the second kind, respec-
tively. As usual, bound states are defined by the vanishing of the coefficient of the diverging
function h

(2)
l outside the muffin-tin sphere.

The scattering states (κ2 > 0) given by (B.14) are normalizable to a δ-function, similarly
to the case of plane waves. The partial waves for κ2 < 0 which are nonbound states are
not normalizable due to the asymptotics of the Hankel function of second kind for r → ∞,
and the bound states are normalizable to unity. This diversity of normalization situations
is clearly not acceptable for basis functions of a method for the determination of electronic
band structures. Therefore one tries to circumvent this problem by a suitable modification
of the partial waves.

B.4.4 Muffin-tin orbitals

Let us first treat the case of states with κ2 < 0 which are nonbound states. The radial
wave functions diverge exponentially for r → ∞ because the Bessel function jl(κr) in (B.14)

has to be replaced by the second kind Hankel function h
(2)
l . Therefore, a normalization

is impossible. To circumvent this problem, we add the term κ cot(ηl)jl(κr) to the radial
function, this yields as a result the muffin-tin orbital (MTO)

ψlm(E, r) = ilYlm(er) ·
{
ψl(E, r) + κ cot(ηl)jl(κr) if r ≤ RMT

κnl(κr) if r ≥ RMT
(B.15)

We call the MTO for r < RMT the head and for r > RMT the tail of the MT orbital.

c© 1999, Thomas Strohm, www.thomas-strohm.de



152 APPENDIX B. THE ELECTRONIC STRUCTURE OF CRYSTALS

The continuous and differentiable MT orbital (B.15) is still regular at the origin but
decays exponentially for r → ∞ in the case κ2 < 0 for both, bound states and nonbound
states. For κ2 > 0, the muffin-tin orbital is normalizable to a δ-function.

As a caveat, we stress that the muffin-tin orbital (B.15) is no longer a solution of the
Schrödinger equation for the muffin-tin potential. This does not matter insofar as we are
constructing eigenfunctions to the translation operators of the crystal lattice by forming
Bloch sums according to (B.11). And the partial wave (B.14) has the same Bloch sum as
the muffin-tin orbital (B.15), because the Bloch sum of spherical Bessel functions (i.e., of
the difference of (B.14) and (B.15)) vanishes.9

The Bloch sum
ψk

lm(r) =
∑

R

eikRψlm(r −R)

for a point r inside an MT sphere contered at R = 0 consists of an MT head (for R = 0),
and an infinite number of MT tails (for R 6= 0). By making use of the expansion theorem10

nL(κ, r −R) = 4π
∑

L′,L′′

CLL′L′′jL′(κ, r − R′)n∗
L′′(κ,R − R′) , (B.16)

the sum of the MT tails can be written as a sum over Bessel functions jl(κr). Note that L
is an abbreviation for the quantum numbers l and m.

Still the MT orbitals (B.15) are energy-dependent. The energy-dependence is removed
by defining the energy-independent muffin-tin orbitals. This is performed in two steps. First,
the relation κ2 = E − vMTZ is ignored and κ is regarded as a free and constant parameter.
This renders the tail of the MT orbital energy-independent. The energy-dependence of the
head of the MT orbital is given by its first energy derivative (denoted by a dot on top of the
function)

ψ̇lm(E, r) = ilYlm(er) ·
[

ψ̇l(E, r) + κ ˙cot(ηl(E))jl(κr)
]

. (B.17)

For a fixed energy Eν, the head of the muffin-tin orbital can be made energy-independent
in first order of E − Eν in the following way. The Bessel function jl(κr) in the MT or-
bital is replaced by the augmented Bessel function Jl(κr), which is chosen such that the
derivative (B.17) (with jl replaced by Jl) vanishes. This yields

Jl(κr) =







− ψ̇l(E, r)
κ ˙cot(ηl(E))

∣
∣
∣
∣
E=Eν

for r ≤ RMT

jl(κr) for r ≥ RMT .

We also replace the Neumann function nl(κr) by the augmented Neumann function Nl(κr)
which is chosen in such a way that the expansion theorem (B.16) remains valid in the form

NL(κ, r − R) = 4π
∑

L′,L′′

CLL′L′′JL′(κ, r −R′)n∗
L′′(κ,R −R′) . (B.18)

9except for k2 = κ2.
10The coefficients CLL′L′′ are the Gaunt coefficients (see [B.6], (5.14)) which are closely related to the

Clebsch-Gordan coefficients. The function jL(κ, r) is defined by jL(κ, r) = ilYlm(er )jl(κr), and the func-
tion nL(κ, r) in a similar way.
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B.4.5 The basis set and structure constants

As in the Wigner-Seitz method, the muffin-tin orbitals and the Bloch sum are used to
construct wave functions ψk from the muffin-tin orbitals such that the ψk obey Bloch’s
theorem:

ψk
lm(r) =

∑

R

eikRψlm(r −R) . (B.19)

The expansion theorem for the augmented Neumann functions (B.18) simplifies the Bloch
sum considerably. For r inside an MT sphere, we obtain

ψk
lm(r) = ψlm(r) +

∑

l′m′

Bk
ln;l′m′il

′

Yl′m′(er)Jl′(κr) ,

where the structure constants Bk
ln;l′m′ are independent of the potential v(r).

The functions (B.19) are used as a basis set in a variational principle which is based on
the Kohn-Sham equation. Consequently, we write the solutions of the Schrödinger equa-
tion (B.7) as linear combinations of the basis set, that is,

ψk (r) =
∑

lm

αk
lmψ

k
lm(r) . (B.20)

B.4.6 The eigenvalue problem

In the KKR method, tail cancellation is used to determine the coefficients αk
lm in (B.20).

This is different in the LMTO method, where the Rayleigh-Ritz variational principle is made
use of. The Hamiltonian Hel is given by (B.7), the wave functions |ψ〉 by (B.20), and the
variational principle reads

δ〈ψ|H − E|ψ〉 = 0 . (B.21)

The necessary condition for a solution of (B.21) is

det 〈ψk
lm|H − E|ψk

l′m′〉0 , (B.22)

where the wavevector k is fixed: due to the translational symmetry there is no mixing of
wave functions (B.20) with different k . By making use of the Bloch relation (B.12), the
crystal integration in (B.22) can be expressed as an integration over a single Wigner-Seitz
cell. Equation (B.20) corresponds to a linear eigenvalue problem, the eigenvalues Ek

j are
the band energies and the eigenvectors αk

lm,j correspond to the Bloch functions ψk
j (r) of the

system.

B.4.7 The atomic spheres approximation (ASA)

The atomic spheres approximation (ASA) comprises two different approximations. First,
the energy κ2 is set to zero in the MTO (B.15). As a consequence, the oscillating Bessel and
Neumann functions in (B.15) become simple power functions.

Depending on the energy, putting κ to zero may be a bad approximation. We can
compensate partly for this by diminishing the volume of the interstitial region. In this
context, the atomic sphere is defined as a sphere centered around an atom and possessing
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the same volume as the WS cell. In the ASA, the MT sphere is replaced by the atomic
sphere.

The ASA increases considerably the computational speed, but also introduces errors.
These can be partly overcome by introducing a perturbation potential (see [B.6], Sect. 6.2).
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Appendix C

Group theory and the classification of
elementary excitations

C.1 Motivation. The “why?” of group theory

In solid state physics there are a lot of complicated measurable quantities (observables)
which depend crucially on the symmetry of the crystal under investigation. The 3 × 3
dielectric tensor εij provides examples of such quantities. It is a symmetrical tensor and
therefore consists of 6 complex independent components. Symmetries of the crystal further
reduce the number of independent quantities in the dielectric tensor. To figure out the exact
number of independent components in case of crystals with complicated structure is by no
means a simple task.

Another interesting quantity is the 4th rank tensor cµνρσ representing the elastic con-
stants. In triclinic systems this tensor has 21 independent real components which are reduced
to only 3 in cubic materials. Group theory1 provides the means to investigate these questions
systematically.

Group theory is also used to classify and characterize the various crystal structure and
plays a very important role in the classification of electronic and vibrational states in crystals.
In doing so it detects and explains symmetry-caused degeneracies of states. Last but not
least, group theory is used to eludicate selections rules for light absorption and Raman
scattering among other things.

C.2 Definition of a group. Basic properties

Groups. A group G is a set of elements G = {G1, . . . , Gg} together with a mapping
◦:G × G → G called group multiplication. The latter satisfies the following group axioms:

(A) Associativity: For all A,B,C ∈ G:

A ◦ (B ◦ C) = (A ◦B) ◦ C
1Introductions to group theory are given in [C.1, C.2, C.3, C.4, C.5].
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C3v E C3 C
−1
3 σ1 σ2 σ3

E E C3 C
−1
3 σ1 σ2 σ3

C3 C3 C
−1
3 E σ3 σ1 σ2

C
−1
3 C

−1
3 E C3 σ2 σ3 σ1

σ1 σ1 σ2 σ3 E C3 C
−1
3

σ2 σ2 σ3 σ1 C
−1
3 E C3

σ3 σ3 σ1 σ2 C3 C
−1
3 E

Table C.1: Multiplication table of the group C3v . The table entries are a ◦ b, where a is
given in the first row, and b is given in the first column of the table.

(N) Existence of a neutral element (also unit element or identity element): There is an
element E ∈ G such that for each G ∈ G:

E ◦G = G ◦ E = G

(I) Existence of an inverse element: For each G ∈ G there is an element G−1 ∈ G such
that

G ◦G−1 = G−1 ◦G = E

If in addition to these three axioms2 also the commutativity holds, then the group is called
a commutative or Abelian group:

(C) Commutativity: For all A,B ∈ G:

A ◦B = B ◦ A

If a group has a finite number of elements it is called a finite group, otherwise it is an infinite
group. The number of elements g of a finite group G is called the order of the group.

Example: C3v. A very instructive example of a group is the group of symmetry
operations of an equilateral triangle (see Fig. C.1). These symmetry operations are rotations
by 0◦, 120◦, and 240◦ (denoted by E, C3 and C−1

3 , latter is the inverse element of C3) with
rotation axis perpendicular to the triangle through its center C. The reflections at planes
perpendicular to the triangle and passing through an edge and the center of the side opposite
to it are also symmetry operations, we denote these by σ1, σ2, and σ3 (see Fig. C.1). These
symmetry operations of the triangle form the group C3v = {E,C3, C

−1
3 , σ1, σ2, σ3}, the

multiplication is defined by means of successive application of the symmetry operations; it
is tabulated in the multiplication table of the group C3v in Tab. C.1.

The multiplication table maps each pair of group elements to another group element and
therefore represents the mapping ◦:G × G → G. Associativity holds. The group element E
is the unit element and the fact that E appears exactly once in every column and row of
the multiplication table shows that every element of the group has one and only one inverse

2Actually, in (N) only E ◦G = G is an axiom. The property G ◦ E = G is a consequence of this is the
other axioms. This is similar for (I). See [C.1].
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σ2σ3

σ1

C

Figure C.1: Mirror planes of an equilateral triangle.

element. Furthermore note that σ1σ2 = C3, but σ2σ1 = C−1
3 , that is, the group is not

commutative (not Abelian).
Subgroups. By inspecting the multiplication table, it can be seen that the subset

C3 = {E,C3, C
−1
3 }

of the group C3v is a group of its own. (Note that the group itself and one of its elements
both are denoted by the symbol C3 in the literature. Usually it is clear from the context,
whether the group or the symmetry operation is meant. To remove any ambiguity we denote
the groups using boldface letters). A subset H of a group G which is also a group with respect
to the multiplication in G is called a subgroup of G. The subsets {E} containing just the unit
element of G, and the “subset” G consisting of the full group G are the trivial subgroups of G,
all other subgroups are called proper subgroups. The group C3 has an interesting property.
By applying C3 repeatedly, all the group elements of C3 can be generated: C3 ◦ C3 = C−1

3

and C3 ◦ C3 ◦ C3 = E (Tab. C.2, left panel). Therefore, C3 is called a cyclic group and
the symmetry operation C3 its generating element. Obviously, cyclic groups are always
commutative (Abelian).

Isomorphism. Consider now the set C3 consisting of the three third roots of one, 1,
α ≡ exp(2π

3
i), and α2 ≡ exp(4π

3
i) with the complex multiplication as mapping (Tab. C.2,

right panel). This set forms a group. It is cyclic and of order 3 just as the group C3.
Furthermore its multiplication table shows exactly the same structure as that of the C3

group (Table C.2). The groups C3 and C3 are therefore called isomorphic groups. If a
mapping f :G → G ′ exists between two groups G and G ′ that maps the elements G ∈ G to
the elements G′ ∈ G ′, that is, G′ = f(G), and has the property

f(GiGj) = f(Gi)f(Gj)

for arbitrary elements Gi, Gj ∈ G, then the mapping f is called a homomorphism and
the groups G and G ′ are called homomorphic, G ∼ G ′. The mapping f :C3 → C3 given by
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C3 E C3 C
−1
3

E E C3 C
−1
3

C3 C3 C
−1
3 E

C
−1
3 C

−1
3 E C3

C3 1 α α2

1 1 α α2

α α α2 1
α2 α2 1 α

Table C.2: Multiplication tables of the groups C3 and C3.

f(E) = 1, f(C3) = α, and f(C−1
3 ) = α2 has these properties but, in addition, the mapping is

a one-to-one correspondence between the elements of the groups G and G ′. This is why such
mapping is usually called an isomorphism and the groups are called isomorphic. Isomorphic
groups can be considered equal, mathematically they have the same structure.

The definitions introduced so far are sufficient for an understanding of most of the theory
of representations of point groups. In order to discuss the symmetry properties of space
groups we need to introduce the following additional definitions and properties of groups.

Cosets. Let us come back to the C3v group. The subset H = {E, σ1} of C3v is a
subgroup of C3v , called Cs. We can construct other subsets of C3v, the so-called right cosets
by multiplying all elements of the subgroup H of G with a fixed element G ∈ G on the right,

HG ≡ {HG | H ∈ H} .

The element G ∈ G is called the coset representative of the coset H.
The right cosets of C3v are Hσ2 = {σ2, C3} and Hσ3 = {σ3, C

−1
3 } (note that HC3 =

{C3σ2} = Hσ2 etc.). The conjunction of the elements of the three cosets H, Hσ2, and Hσ3

together contains all the elements of the group C3v. The relation

C3v = H + Hσ2 + Hσ3 , H = {E, σ1}

is called the decomposition of C3v into right cosets with respect to the subgroup H. Another
right coset decomposition of C3v is the one with respect to the subgroup C3, given by

C3v = C3 + C3σ1 , C3 = {E,C3, C
−1
3 } .

The definition of left cosets and the decomposition into left cosets is analogous to the one
given above for right cosets. Note that two cosets HA and HB for A,B ∈ G are either
identical or do not contain any common elements (they are disjunct sets).

Let g and h denote the order of the group G and its subgroup H, respectively, and l the
number of cosets in the coset decomposition of G with respect to H, called the index of H
in G. Then the relation g = hl holds. An interesting consequence of this relationship is that
a group with prime order does not have proper subgroups.

Conjugate classes. For the theory of representations of a group, the central part of
this chapter, the notion of the conjugate classes is important. We define a relation on the
group G. Two elements A and B of G are called conjugate, if there exists an element G of G
such that B = GAG−1. We represent conjugation of two elements as A ∼ B, explicitly

A ∼ B if and only if there is a G ∈ G such that A = GBG−1 . (C.1)
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GHG−1 H = {E} H = {E, σ1} H = {E,C3, C
−1
3 }

E {E} {E, σ1} {E,C3, C
−1
3 }

C3 {E} {E, σ2} {E,C3, C
−1
3 }

C
−1
3 {E} {E, σ3} {E,C3, C

−1
3 }

σ1 {E} {E, σ1} {E,C3, C
−1
3 }

σ2 {E} {E, σ3} {E,C3, C
−1
3 }

σ3 {E} {E, σ2} {E,C3, C
−1
3 }

Table C.3: Conjugate classes of some subgroups of C3v .

The properties of the conjugation are the reflectivity (r) which states that A ∼ A, then the
symmetry (s) implying A ∼ B if B ∼ A, and the transitivity (t) which expresses the fact
that if A ∼ B and B ∼ C (C ∈ G), then A ∼ C holds. These are the axioms of a relation.
Relations decompose sets into disjunct subsets called classes. The decomposition of sets into
classes is called classification of the set with respect to the given relation. The group C3v

decomposes into the three classes

C1 = {E} , C2 = {C3, C
−1
3 } , and C3 = {σ1, σ2, σ3}

containing the unit element, the rotations, and the reflections, respectively.

The coset decomposition and the classification of groups are two methods to decompose
groups into disjunct subsets the composition of which covers the whole group.

Now we construct the sets

GHG−1 = {GHG−1:H ∈ H}

for a fixed element G ∈ G. These sets turn out to be subgroups of G, and are called conjugate
subgroups of H. The conjugate subgroups of the trivial subgroup {E} as well as the proper
subgroup Cs = {E, σ1}, and C3 = {E,C3, C

−1
3 } of C3v with respect to a element G ∈ G

are given in Tab. C.3. The conjugate subgroups of the trivial subgroup {E} and C3 are the
subgroups themself. This leads to the definition of the invariant subgroups.

Invariant subgroups. If all the conjugate elements to each element of the subgroup H
of G are contained in H, that is, if GHG−1 ∈ H is fulfilled for all G ∈ G, we call H an
invariant subgroup of G, also normal divisor (“Normalteiler” in German) or normal subgroup.
In this case, H is composed out of classes of G. The invariant subgroups of C3v are the trivial
ones, {E} and G, as well as the proper subgroup C3 = C1 ∪ C2 (see Tab. C.3). Note that
GHG−1 ∈ H implies GHG−1 = H which also can be written in the form GH = HG and
expresses the fact that for invariant subgroups H left and right cosets are identical and
therefore the left and right coset decompositions are equivalent.

Using the notation of invariant subgroups, we can define new groups, the factor groups.
Consider a group G of order g and an invariant subgroup N of G of order n. The coset
decomposition is

G = NE + NG2 + · · ·+ NGl , Gi ∈ G
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C3v/C3 C3 C3σ1

C3 C3 C3σ1

C3σ1 C3σ1 C3

Table C.4: Multiplication table of the factor group C3v/C3.

with l = g/n. For two cosets NA and NB with A,B ∈ G a multiplication can be defined
by3

NA · NB ≡ {NANB:M,N ∈ N} .
It can easily be seen that this set is the coset represented by AB, that is,

NA · NB = N (AB)

and, consequently, the product of two cosets is also a coset. The cosets of a coset decompo-
sition with respect to an invariant subgroup form a group under the multiplication defined
above. This group is called the factor group (or quotient group) of G with respect to the
invariant subgroup N , denoted by G/N . (This notation motivates the name normal divisor
for an invariant subgroup).

As an example we mention the coset decomposition of the group C3v with respect to its
invariant subgroup C3,

C3v = C3 + C3σ1

which defines the factor group C3v/C3. This is a group of order 2 (and therefore cyclic,
commutative and isomorphic to the group {1,−1} with real number multiplication). The
multiplication table is given in Tab. C.4.

Direct product. We can do the other way around and construct “larger” groups by
using the direct product. Given two groups G = {G} and G ′ = {G′} of order g and g′ and
a commutative multiplication GG′ = G′G. Then the gg′ pairs GG′ form a group called the
direct product group G × G ′.

C.3 An important example for HTCS’s:

The tetragonal D4h group

We start by describing the tetragonal D4 group which turns out to be a subgroup of D4h,
namely the group of all proper rotations of D4h. This group contains a four-fold rotation
axis (E,C4, C2, C

−1
4 ) and perpendicular to it four two-fold axes (C2x, C2x′, C2y, C2y′) which

are the symmetry operations of the object in Fig. C.2, left panel and is of order 8. The
multiplication table is given in Tab. C.5.

Next the classes are determined. The symmetry operation E forms its own class as the
operation C2 does. The C4 and C−1

4 operations form the class called 2C4. The C2x and C2y

operations constitute the class 2C ′
2 and the C2x′ and C2y′ operations constitute the class

2C ′′
2 . Therefore the D4 group has a total number of nc = 5 classes.

3repeated elements in {NANB:M,N ∈ N} are considered to be removed.
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D4 E C4 C2 C
−1
4 C2x C2y C2x′ C2y′

E E C4 C2 C
−1
4 C2x C2y C2x′ C2y′

C4 C4 C2 C
−1
4 E C2x′ C2y′ C2y C2x

C2 C2 C
−1
4 E C4 C2y C2x C2y′ C2x′

C
−1
4 C

−1
4 E C4 C2 C2y′ C2x′ C2x C2y

C2x C2x C2y′ C2y C2x′ E C2 C
−1
4 C4

C2y C2y C2x′ C2x C2y′ C2 E C4 C
−1
4

C2x′ C2x′ C2x C2y′ C2y C4 C
−1
4 E C2

C2y′ C2y′ C2y C2x′ C2x C
−1
4 C4 C2 E

Table C.5: Multiplication table of the group D4.

D4h
D4

Figure C.2: The tetragonal D4 and D4h point groups.
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Each of the 5 two-fold rotations forms together with the identity E a subgroup of order 2
of the D4 group. All these 5 subgroups are isomorphic to the group C2 = {E,C2}. Further-
more, there are three subgroups of order 4. These are the groups D2 = {E,C2, C2x, C2y},
the group {E,C2, C2x′, C2y′} which is isomorphic to D2, and the cyclic group C4 =
{E,C4, C2, C

−1
4 }. The five subgroups of order 2 and the latter 3 subgroups of order 4

exhaust the number of proper subgroups of D4. Invariant subgroups are subgroups which
consist of classes. The subgroups C2, C4 and D2 are the invariant (proper) subgroups of D4,
their decomposition in classes is given by

C2 = E ∪ 2C2

C4 = E ∪ 2C4 ∪ C2

D2 = E ∪ C2 ∪ 2C ′
2 .

Using these 3 classes to perform a coset decomposition of D4, we get

D4 = C4 + C4C2x

D4 = D2 + D2C4

D4 = C2 + C2C4 + C2C2x + C2C2x′

and the factor groups D4/C4, D4/D2, and D4/C2. The first two are isomorphic to the
group C2, the last one is isomorphic to the group C4.

C.4 Representations of a group

With respect to applications, especially calculations with a computer, it is very handy to
have a one-to-one correspondence between an abstract group under consideration, and a
group of matrices, consisting of real or complex numbers, which “shares some properties”
with the former group. These correspondences are investigated in the theory of group
representations.

Representations. Let G be a finite group of order g and M the set of non-singular
complex n × n square matrices, which, taking the matrix multiplication as the group mul-
tiplication, constitute a group called the complex general linear group of order n, denoted
GL(n,C). Furthermore let D:G → M be a mapping with the property of being homomor-
phic, that is,

AB = C ⇒ D̂(A)D̂(B) = D̂(C) (C.2)

for A,B,C ∈ G. Then, the set M = {D̂(G):G ∈ G} of matrices is called a representation
of the group G. The dimension dα of a representation α is the size n of the matrices.

Putting A = E or C = E, respectively, in the former equation, we immediately see that
D̂(E) = 1̂, the unit element of G is represented by the unit matrix. Moreover, D̂(A−1) =
D̂(A)−1, that is, the matrix representing the inverse of a group element is the inverse of the
matrix representing the group element itself.

If the mapping D̂ is isomorphic, that is, homomorphic but one-to-one in both directions,
then the representation is called faithful. Each group has a trivial representation, the identity
representation given by the “1 × 1 matrix” D̂(G) = 1 for all G ∈ G. If the order of G is
larger than 1, then this representation is obviously a homomorphism, not an isomorphism.
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Example. To clarify the definitions and properties given, the point group C4 consisting
of a single 4-fold rotation axis will serve. This is a cyclic group (and therefore Abelian) of
order 4 with the elements E, C4, C2, and C−1

4 and is a subgroup of D4 (see Tab. C.5). It is
easy to see, that the 2×2 rotation matrices with rotations by 0, π/2, π, and 3π/2 constitute
a representation of the group C4:

D̂(E) =

(
1 0
0 1

)

, D̂(C4) =

(
0 −1
1 0

)

,

D̂(C2) =

(
−1 0
0 −1

)

, D̂(C−1
4 ) =

(
0 1
−1 0

)

.

(C.3)

This representation is faithful and also a unitary representation, because all constituent
matrices are unitary. Instead of doing calculations using the elements G of the group G, we
can use, for many purposes, the representation matrices D̂(G).

Equivalent representations. Given a representation D1, we can easily construct
others. One method is to take the matrices D̂2(G) = M̂−1D̂1(G)M̂ for all G in G and for
a given non-singular matrix M̂ . It is easy to show that this set {D̂2(G):G ∈ G} is also a
representation of the group G isomorphic to D1. As a consequence, a group has an infinite
number of representations, most of them generated in a trivial way from others. To get rid
of the seeming redundancy, we define an equivalence relation which relates representations
which can be generated from each other in a trivial way. This relation decomposes the set of
all representations into equivalence classes. Afterwards, we only consider these equivalence
classes.

Two representation D̂1 and D̂2 are called equivalent, if there is a non-singular matrix M̂
such that

D̂1(G) = M̂−1D̂2(G)M̂ , for all G ∈ G. (C.4)

Two representations which are not equivalent are called inequivalent.

Direct sum. Another method to construct new representation from existing ones is to
form the set of diagonal matrices D̂(G) = diag(D̂1(G), D̂2(G)) from two representations D1

and D2 which also is a representation and called the direct sum D = D1 + D2 of the
representation D1 and D2. For a representation to be used in a calculation, is should be
as simple as possible, so we will investigate whether it is possible to decompose a given
representation into the direct sum of two or more representations. This is the central aim
of the theory of group representations.

A representation which has the property that all of its representation matrices D̂ can be
written in the block form

D̂ =








Â 0̂ 0̂ · · ·
0̂ B̂ 0̂ · · ·
0̂ 0̂ Ĉ · · ·
...

...
...

. . .








with blocks of the same size for all matrices of the representation is called a reducible repre-
sentation. The reduction of a given reducible representation into irreducible representations
is assisted by a number of important theorems stated in the next section.
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C.5 Theorems about representations

If a crystal possesses a certain point group symmetry G, then the Hamiltonian of the crystal
(in absence of external fields and strong spin-orbit coupling) is invariant with respect to
this group. Two electronic wave functions (with quasimomentum k = 0) which are related
by the transformation given by a group element therefore have the same energy eigenvalue,
they are degenerate. The same is true for k = 0 vibrational patterns. If there is no
accidental degeneracy, the wave functions (or vibrational patterns) which belong to a given
energy eigenvalues can be classified according to irreducible representations of the point
group G. Irreducible representations on the other hand are classified using their characters.
This classification is contained in character tables, which are constructed by applying the
theorems to be presented in this section. Proofs in general will be omitted, in this case
references will be given.

Unitarization of a representation: Every representation of a finite group is equivalent to
a unitary representation.

This is a very important theorem, with many consequences. As an example consider
a 1-dimensional representation. The latter theorem implies that the 1 × 1 matrices of the
representation can all be taken to have absolute value 1, that is, can be written in the
form exp(iϕ). In addition, this theorem allows us to consider only unitary representations.
From now on, we only consider unitary, inequivalent, and irreducible representations (IRs).4

Characters. The character χ(D)(G) of a group element G ∈ G with respect to an IR D
is given by the trace of the representation matrix D̂(G),

χ(G) = Tr D̂(G) =

dD∑

i=1

Dii(G) ,

where dD is the dimension of the representation D. Because of the property χ(M̂D̂M̂−1) =
χ(D̂), the character of a group element G is the same for all equivalent representations. The
set of characters {χ(D)(G):G ∈ G} is called the character of the representation D (and all
equivalent ones).

The characters of the representation (C.3) of C4 are

χ(E) = 2 , χ(C4) = 0 , χ(C2
4 ) = −2 , χ(C−1

4 ) = 0 .

Note that the character of the unit element E with respect to an IR D is the dimension dD

of the IR. It gives the essential degeneracy of states belonging to D.
We have seen that two elements A,B ∈ G are conjugated if an element G ∈ G exists,

such that A = GBG−1. For the IR D then D̂(A) = D̂(G)D̂(B)D̂(G−1) is valid and because
of D̂(G−1) = D̂(G)−1 and the property Tr(ABC) = Tr(CAB) of the trace of matrices,
the character of A is equal to that of B. Consequently the character of all group elements
belonging to the same class is the same.

The character of an IR is its characteristic feature and can be used to identify the
(inequivalent) IRs of a group. To determine the characters of the IRs of a group, some
theorems are useful.

4In the literature, unitary, inequivalent, and irreducible representations are usually abbreviated by
“REP.” We use the abbreviation “IR” to stress the property of irreducibility.
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Dimensions of the IRs: The dimensions dD of the IRs of a group G of order g obey the
relation ∑

D

d 2
D = g . (C.5)

This is a very useful theorem; for groups with small g the dimensions dD of all IRs can often
be determined already by inspection of (C.5). The C4 group is of order g = 4. One IR is the
trivial one of dimension d = 1. Only 12 + 12 + 12 + 12 = 4 satisfies (C.5) and, consequently,
the C4 group has 4 IRs of dimension 1 each. The representation given in (C.3) is therefore
reducible.

First Orthogonality of Characters: The characters of an irreducible representation of a
finite group satisfy the orthogonality relation

nc∑

i=1

hiχ
(α)(Ci)

∗
χ(β)(Ci) = gδαβ , (C.6)

the summation runs over all nc classes Ci of group elements, χ(α)(C) denotes the character
of a group element G of class C in the representation D(a).

Second Orthogonality of Characters: The characters of an irreducible representation of
a finite group satisfy the orthogonality relation

nr∑

α=1

χ(α)(Ci)
∗
χ(β)(Cj) =

g

hi
δij , (C.7)

the summation runs over all nr IRs of the group and hi is the number of group elements
contained in the same class as Gi.

Characters χ(α)(C) of irreducible representations are functions of the representa-
tions D(α), α = 1 . . . nr and the class Ci of elements of the group, i = 1 . . . nc.

Number of IRs: The number Nr of inequivalent irreducible representations of a finite
group G is equal to the number of classes nc of group elements.

The characters of the nc classes of group elements with respect to the nr IRs are usually
arranged in the character table of the group G.

If we regard (hi/g)χ
(α)(Ci) as components of nc-dimensional vectors v (α) = ((hi/g)χ

(α)(Ci))
with i = 1 . . . nc or vi = ((hi/g)χ

(α)(Ci) with α = 1 . . . nr, the orthogonality theorems state
that v (α)v (β) = δαβ and vi~vj = δij, that is, considered as rows or columns, they are orthonor-
mal.

C.6 Example: Character table of the C4v group

To give an example for the construction of character tables using the rules stated in the last
section, we focus on the C4v group. This group is both, simple enough to be suitable as an
example to illustrate the structure and construction of character tables, and important for
this work, because C4v is an invariant subgroup of the tetragonal group D4h which is the
symmetry group of many high-temperature superconductors.

The point group C4v consists of 4 vertical mirror planes, denoted by σx, σx′ , σy, and σy′

(see Fig. C.3), and an additional 4-fold rotation axis C4. The other symmetry operations of
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the group are the identity E and the rotations C2
4 and C3

4 ≡ C−1
4 . This makes a total of 8

symmetry operations, the group is of order g = 8.

Because of σxC4σx′ = C−1
4 , the symmetry operations C4 and C−1

4 belong to the same
class which we call 2C4. Furthermore, because of C−1

4 σxC4 = σy, the reflections σx and σy

constitute a class 2σv. Similarly, σx′ and σy′ belong to a class 2σd. Therefore, C4v decomposes
into the nc = 5 classes E, 2C4, C

2
4 , 2σv, and 2σd. The number of inequivalent irreducible

representations (IRs) nr of a group is equal to the number nc of its classes, consequently,
nr = 5 for C4v .

Now we use the fact expressed by (C.5) that the sum of the squares of the dimensions of all
IRs of a group is equal to its order g. The only possibility to fulfill this is 12+12+12+12+22 =
8, that is, the group C4v has four one-dimensional and one two-dimensional (inequivalent)
irreducible representations.

We start constructing the character table of C4v. The character of the identity E for any
representation is equal to the dimension of the representation. This gives us the first column
of Tab. C.6. The first row is also easy, because for the unit representation the character is 1
for every symmetry operation in the group.

According to the unitarity law (Sect. C.5), all representation matrices can be chosen to
be unitary. Therefore, for one-dimensional representations, the magnitude of all characters
is 1. On the other hand, the second orthogonality law (C.7) with i = j states that for every
class of symmetry operations, the sum of the magnitudes of the characters of all the IRs
is equal to the order g of the group divided by the number h of symmetry operations in
the class, g/h. In the case of the classes 2C4, 2σv, and 2σd, this is g/h = 4. The sum of
the absolute squares of the 4 one-dimensional representations is already 4, consequently the
character of the latter three classes is zero in the two-dimensional representation.

Now we use the fact that for 1-dimensional representations the relation χ(Gn) = χ(G)n

for G ∈ G holds. Therefore the characters of all the classes in the 1-dimensional represen-
tations of the C4v group are ±1. Since the reflection at a mirror plane is its own inverse,
the character of a reflection has the property χ(σv)

2 = 1 (and analogous for σd), therefore,
χ(σv) = ±1. This is also true for the rotation C4. From the fact that C4 and C−1

4 are in the
same class, it follows that χ(C4) = χ(C3

4 ), and therefore χ(C4) = ±1.

Let us compare this to the situation in the point group C4 which is the cyclic group
generated by the 4-fold rotation C4 and therefore of order 4. Each symmetry operations is
a class of its own. Therefore, we only have C4

4 = E and χ(C4)
4 = 1 with the consequence

that ±1 and ±i are all possible values of χ(C4). A look into a group theory book shows that
indeed there are IRs of the C4 group with the character of the C4 4-fold rotation assuming
the values ±i. The additional mirror planes in C4v prevent the characters of the 4-fold
rotation to become imaginary.

The second orthogonality theorem of characters states that for two different classes, the
characters of the different IRs, considered as vectors, are orthogonal. Using this and the
property proved in the last paragraph that all the characters of the 1-dimensional represen-
tations are ±1 in the case of the C4v groups, the characters of the classes 2C4, 2σv, and 2σd

for all the IRs are determined. Now only the characters of the class C2
4 are left.

These characters—considered as vectors—also have to be orthogonal to the characters
of the other classes. This leaves only two possibilities, the first is the one in the character
table in Tab. C.6, and the second which differs only in an overall sign from the first. This
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C4v E 2C4 C
2
4 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

Γ(r) 3 1 -1 1 1
Γ(r) × Γ(r) 9 1 1 1 1

Table C.6: Character Table of C4v . The characters of the 5 irreducible representations,
of the reducible representation of a vector and the representation of a 2nd rank tensor are
given.

σx’

σx

σy’σy

Figure C.3: Mirror planes of C4v.

sign is determined by the character of the trivial representation, χ(A1)(C2
4) = 1.

C.7 Lattices and translational symmetry

Point groups. We already introduced a considerable number of point of groups, namely the
groups C3, C3v, D4h, and D4. All these groups are point groups, groups of transformations
which leave a particular point fixed. Another one of these point groups is the cyclic group C5,
consisting of the 5 rotations by n · 72◦, n = 0, . . . , 4 which leave the pentagon invariant.

Bravais lattice. The characteristic symmetry of a crystal is the translational symmetry
which is described by 3 vectors ai called the primitive vectors. Such three vectors ai generate
a set of points tn =

∑
niai called lattice vectors or lattice points (and sometimes lattice sites),

n = (ni) with integer numbers ni. The set {tn} is called a Bravais lattice5

In this section, we determine the possible point group symmetries which are compatible
with the translational symmetry of a Bravais lattice given by three primitive vectors ai.
But before doing this, we introduce some terms and constructions which are in use when

5note that for a given Bravais lattice the choice of primitive vectors is not unique.
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(a) (c)(b)

Figure C.4: (a) Two different primitive vectors and the primitive cell they span, (b) non-
primitive translations vectors spanning a conventional unit cell, and (c) the Wigner-Seitz
cell of YBa2Cu4O8 (Y-124).

discussing properties of crystal lattices.

Primitive cell. A region of space which contains exactly one lattice point tn and which
fills (without overlapping) the whole space if translating it through the lattice vectors, is
called a primitive cell. One obvious choice for the primitive cell is the parallelepiped spanned
by the three primitive vectors ai (see Fig. C.4(a)). Usually this choice has the disadvantage
of not having the full symmetry of the Bravais lattice. Two ways to circumvent this problem
are common.

Conventional cell and Wigner-Seitz-cell. The first is the conventional (or crys-
tallographic) unit cell which is chosen to be larger than the primitive cell in order to have
the full point group symmetry (see Fig. C.4(b)). The second choice is the Wigner-Seitz cell
which is a primitive cell. Given a lattice point, the Wigner-Seitz cell contains all points
which are closer to the lattice point under consideration than to any other equivalent (upon
translations) point of the crystal (see Fig. C.4(c)). This cell by construction has the full
symmetry of the lattice.

Figure C.4 shows the b− c plane of the lattice of YBa2Cu4O8 (Y-124), the points show
the position of a particular atom, for instance the Y atom, in the lattice. On the left side (a)
a certain choice for the primitive vectors is shown. The perpendicular vectors in (b) are the
basis vectors of a suitable choice of a conventional unit cell. On the right side (c) of the
figure the construction of the Wigner-Seitz cell (grey area) is illustrated.

Let us return to the question of the compatibility of translational and point group symme-
tries and the classification of Bravais lattices. We look for the rotations which are compatible
with the translational symmetry of a Bravais lattice. The origin of the rotation is considered
to be a lattice point. Due to the discrete nature of the lattice, n successive rotations have to
be equal to the identity operation, that is, we consider n-fold rotation axes (n 6= ∞). First
we show that the rotation axis of a rotation compatible with the translational symmetry
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C4

t3

T1

Cn τ Cn
−1τ

t2

t0 2π
n

t1

T

τ

(a) (b)

Figure C.5: The proof (see text) that only the rotations C2, C3, C4, and C6 are compatible
with translational symmetry.

necessarily is parallel to a lattice vector. Take a lattice vector t0 and generate the vectors
ti = (Cn)it0 for i = 1, . . . , n. The lattice vector T ≡ ∑n−1

i=0 ti (see Fig. C.5(a)) is invariant
with respect to the rotation Cn, and therefore parallel to the rotation axis (if it vanishes acci-
dentally, we choose another lattice vector t0). The lattice vectors Ti = ti−ti−1 (Fig. C.5(a))
are perpendicular to T because TiT is invariant upon rotation and

∑

i TiT = 0. We have
thus proved that if Cn is a rotation leaving the Bravais lattice invariant, there are lattice
vectors perpendicular to the rotation axis of Cn. The problem now is reduced to a two-
dimensional one. For the shortest ~τ of the lattice vectors perpendicular to the rotation axis,
then Cn~τ + C−1

n ~τ = 2 cos(2π/n)~τ must be a primitive vector (Fig. C.5(b)). This is only
possible for n = 1, 2, 3, 4, and 6 (the case n = 1 is trivial). Therefore, only rotations by π,
2π/3, π/2, and π/3 are possible candidates for point group symmetry operations leaving a
given Bravais lattice invariant. Other rotations can be excluded.

Taking these rotations and also the inversion, 32 different groups can be constructed.
They are called the 32 crystallographic point groups. All these groups are possible point
symmetry groups of a given Bravais lattice. Two of the 32 point groups are the tetrag-
onal D4h and D4 groups. Only the former of these groups is important when classifying
the Bravais lattices, because if a Bravais lattice has D4 symmetry, it automatically also
has D4h symmetry. This observation decomposes the set of 32 point groups into 7 sub-
sets. The 7 symmetry groups with maximum symmetry in each of these 7 subsets are the
7 crystal systems which are cubic (Oh), hexagonal (D6h), tetragonal (D4h), trigonal (D3d),
orthorhombic (D2h), monoclinic (C2h), and triclinic (S2).

Lattice with a basis. More complex crystals, as for instance crystals consisting of
different kinds of atoms, do not have the property that all the atoms are located on a site of
a Bravais lattice. This is also the case for some apparently simple structures as for instance
the honeycomb net, which cannot be described by using just three primitive vectors ai. In
such crystals, however, it is possible to group together few atoms and describe the position
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of these groups by means of a Bravais lattice. This construction is called a lattice with a
basis. A simple example for the first case is sodium chloride (NaCl) which is cubic, with Cl
atoms as nearest neighbors of the Na atoms and vice versa. This lattice is described by a
face centered cubic lattice with a basis consisting of a sodium and a chloride atom. In the
system YBa2Cu4O8, for instance, each primitive cell of the Bravais lattice contains 15 atoms.
Sometimes a lattice with a basis is used also to describe the body-centered cubic (bcc) and
face-centered cubic (fcc) Bravais lattices to make more explicit their cubic symmetry.

The simple Bravais lattice can be considered as a Bravais lattice with a basis having the
full symmetry of the simple Bravais lattice. A basis which does not have (at least) the full
symmetry of the Bravais lattice breaks this symmetry. This symmetry breaking is possible
in different ways which generate the 32 crystal systems. Consider a orthorhombic Bravais
lattice which has D2h symmetry. A basis can destroy this symmetry in two ways, either
it destroys the horizontal mirror plane and the symmetry becomes C2v or it destroys the
vertical mirror planes and the symmetry becomes D2.

We summarize. Bravais lattices are the set of points generated in three dimensions by
three non-collinear primitive vectors. Symmetry operations leaving a point invariant have
to be compatible with the Bravais lattice. This is fulfilled just by the C2, C3, C4, and C6

operations out of all possible rotations. The point groups compatible with the Bravais lattice
turn out to be 32, this is the number of different crystallographic point groups describing
the different types of Bravais lattices with a basis. Selecting the groups with maximum
symmetry, the Bravais lattices without a basis are found. These can be grouped into 7
types, corresponding to the number of crystal systems.

C.8 Vectors, tensors, and their transformation

behavior

The derivation of selection rules for light absorption, Raman scattering, and other forms of
spectroscopy, is intimately related to the decomposition of the representations that corre-
spond to the transformation laws for the appropriate vectors and tensors, into irreducible
representations of the point group of the crystal under consideration.

Vectors and representation matrices. When rotating by an angle of ϕ about an
axis n , a vector v = (vi) transforms according to the law

v → Rij(n , ϕ) vj

where R̂(n , ϕ) = (Rij(n , ϕ)) is a rotation matrix , which in the special case of n = ez has
the form

R̂(ez, ϕ) =





cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1



 . (C.8)

Rotations about another axis n ′ can be written in the form

R̂−1R̂(ez, ϕ)R̂

with another rotation matrix R̂, rotating first the axis n ′ to ez, then performing a rotation
about the axis ez, and rotating back to n ′: All rotations by a given angle ϕ are equivalent.
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n 1 2 3 4 6

χ(Γ(r))(Cn) 3 -1 0 1 2

Table C.7: Characters of the n-fold rotation in the vector representation.

Particularly,
Sp R̂(n ′, ϕ) = Sp R̂(ez, ϕ)

holds for any rotation axis n ′.
Consider now a point group G. The proper rotations of the point group correspond to

rotation matrices R̂ and yield a 3-dimensional representation of the point group G. Vec-
tors transform according to this representation, therefore it is called the vector representa-
tion Γ(r). The character of the rotation Cn by an angle of 2π/n in the vector representation
is given by the trace of R̂(n , ϕ), that is,

χ(Γ(r))(Cn) = Sp R̂(n , 2π/n) = 1 + 2 cos
2π

n

and is tabulated in Tab. C.7 for the rotations which are consistent with the translational
symmetry of Bravais lattices. The character of rotatory inversions is the one of the corre-
sponding proper rotation times −1 for the inversion. Mirror planes have the character +1.

Let us focus on the C4v group (Tab. C.6) and reduce Γ(r) into irreducible representations.
The characters of the vector representation Γ(r) in the group C4v are given by Tab. C.6.
From this, the decomposition

Γ(r) = A1 + E (in C4v) (C.9)

follows easily.
As an illustration of the reduction of the representation associated with tensors of rank r,

we treat the special case r = 2. Extension to the general case is straightforward. A tensor
of rank 2 consists of 3 × 3 = 9 quantities Tij which transform under rotation according to

(Tij) → RikRjlTkl ,

that is, like a product of two vectors. The multiplication of rotation matrices R̂ is related
to the product of representations that must be defined next.

Product representation. Given two representations A and B of a group G with the
representation matrices D(A)(G) and D(B)(G) for G ∈ G, respectively, we define the product
representation A× B by the representation matrix

D
(A×B)
ij,kl (G) ≡ D

(A)
ik (G)D

(B)
jl (G) . (C.10)

The character χ(A×B)(G) =
∑

ij D
(A×B)
ij,ij (G) of the product group is given by the relation

χ(A×B)(G) = χ(A)(G) · χ(B)(G) , (C.11)

that is, by the product of the character of the representations A and B.
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Using this, we see that a tensor of second rank gives raise to a IR corresponding to the
product representation of two vector representations Γ(r) × Γ(r). The characters of these
representations are also tabulated in Tab. C.6.

In order to be specific, we once again consider the example of the C4v group. After
playing around a little bit with the character table, it turns out that

Γ(r) × Γ(r) = 2A1 + A2 +B1 +B2 + 2E (C.12)

is the decomposition we looked for.
Decomposition of a nth rank tensor. For tensors of rank r > 2 the decomposition

works in a similar way, but it becomes difficult to carry it out just by inspection. Fortu-
nately, there is a systematic way to perform the decomposition. We write the reducible
representation D as a direct sum

D =
∑

α

qαD
(α) (C.13)

of irreducible representations D(α), and look for a way to determine the coefficients in (C.13).
Calculating the trace of the representation matrices which are related to (C.13) yields the
equation

χ(D)(G) =
∑

α

qαχ
(α)(G) for all G ∈ G, (C.14)

which decomposes the characters of the representation D into those of the irreducible repre-
sentations. Multiplying (C.14) by χ(β) ∗(G), summing over all group elements, and applying
the First Orthogonality of Characters, we find

qβ =
1

g

∑

G∈G
χ(β) ∗(G)χ(D)(G) (C.15)

where g is the order of G.
This is a very important result which leads to the decompositions of a reducible repre-

sentation into irreducible ones by using (C.13), provided the character table of the group G
is known.

The decomposition of an nth rank tensor is now straightforward. Because of (C.10), the
nth rank tensor transforms according to the representation

D[n] ≡ DΓ(r) ×DΓ(r) × · · · ×DΓ(r)

︸ ︷︷ ︸

n factors

(C.16)

whose character is (see C.11)
χ[n](G) =

(
χΓ(r)

)n
(C.17)

and the decomposition into irreducible representations is given by

D[n] =
∑

α

qαD
(α) ; qα =

1

g

∑

G∈G
χ(β) ∗(G)

(
χΓ(r)(G)

)n
. (C.18)

We determined so far the irreducible representations which are contained in the repre-
sentations of a nth rank tensor. But we did not yet decompose the tensor into parts which
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transform according to those irreducible representations. Such a decomposition is possible
for all objects f for which the transformation behavior with respect to the operation of the
point symmetry group G is defined. We write

f =
∑

α

f (α) with Gf (α) = D(α)(G)f (α) for all G ∈ G .

The quantity D(α)(G) is the representation matrix of the group element G in the irreducible
representation α.

The decomposition can be performed using projection operators. For each irreducible
representation of a group G, projection operator is given by

P (α) =
dα

g

∑

G∈G
χ(α) ∗(G)G , (C.19)

where Dα is the dimension of the irreducible representation α, and g is the order of G.
We apply this to the real 2nd rank tensor T̂ , choose the point group C4v as symmetry

group, and work in 2 dimensions. The 2× 2 representation matrices of the vector represen-
tation have the form

D̂(G) = ±
(

cosϕ − sinϕ
sinϕ cosϕ

)

for ϕ = nπ/4, and the application of the group elements of C4v to the tensor is defined by

GT̂ = D̂(G)T̂ D̂T (G) .

Therefore, the decomposition yields

T̂ =
∑

α

T̂ (α) , T̂ (α) =
1

8

∑

G∈C4v

χ(α)(G)D̂(G)T̂ D̂T (G) ,

which evaluates to T̂ = T̂A1 + T̂A2 + T̂B1 + T̂B2 with

T̂A1 =

(
Txx + Tyy

Txx + Tyy

)

, T̂A2 =

(
Txy − Tyx

−(Txy − Tyx)

)

,

T̂B1 =

(
Txx − Tyy

Txx − Tyy

)

, T̂B2 =

(
Txy + Tyx

Txy + Tyx

)

.

The E1g representation does not appear in the decomposition. A table which shows the
results of the decomposition of the 2nd rank Raman tensor for different point groups can be
found in [C.6].

Independent components of a tensor. One of the important topics of this chapter
is to answer the question concerning the number of independent components of a tensor
(see [C.2], Sect. 8.5) for a particular point group symmetry of a crystal under consideration.

The tensor components corresponding to the irreducible representations which are dif-
ferent from the identity representation are not invariant when applying the symmetry oper-
ations on the lattice, and therefore have to vanish. Only the components which transform
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according to the identity representation are non-vanishing. Consequently, we are inter-
ested in the number of times the identity representation occurs in the tensor representation.
Putting γ = 1 into (C.18), we find the answer that

nind =
1

g

∑

G∈G

(
χΓ(r)(G)

)n
(C.20)

for a nth rank tensor. For the C4v group a (non-symmetric) tensor of 2nd rank therefore
has

nind =
1

8
[9 + 2 · 1 + 2 + 2 · 1 + 2 · 1] = 2

independent components. In the D4h group, a 4th rank tensor has

nind =
2

16
[81 + 2 · 1 + 1 + 2 · 1 + 2 · 1] = 11

independent components.
Tensors with additional symmetries. When calculating the Raman efficiency for

electronic Raman scattering in superconductors, 4th rank tensors like

µijkl = 〈µ−1
ij µ

−1
kl 〉 (C.21)

have to be discussed. The 4th rank tensor cµνρσ of elastic constants is analogous to µijkl

with respect to the symmetries. These tensors clearly are symmetric when interchanging
(i ↔ j), or (k ↔ l), or ((i, j) ↔ (k, l)).6 The question arises as to how many independent
components a tensor with this permutation symmetry in a crystal of a given point group
symmetry has.

This question can be answered using (C.18), but the quantity (χΓ(r)(G))n has to be
replaced by the character of the accordingly symmetrized tensor.

The symmetry of a tensor is described by a subgroup of the group Pn of permutations
of n objects (refer to [C.3], Chap. 15). A permutation of n objects is denoted by the symbol

p =

(
1

p1

2

p2
· · · n

pn

)

and describes the replacement of the object i by pi. Permutations often produce cyclic
replacements. For instance, in the permutation

p =

(
1

3

2

2

3

4

4

1

)

,

the object 1 is replaced by 3, 3 by 4, and 4 by 1. Object 2 is replaced by itself, which is
also some kind of cyclic replacement. In the cycle notation the permutation p is denoted by
p = (1 3 4)(2), it is said to consist of two cycles of length ν1 = 3, and ν2 = 1. The equation
∑

m νm = n is always fulfilled.

6Recall that µ̂−1 is the inverse effective mass tensor which has the property µ−1
ij (k) = µ−1

ji (k).
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Point group independent components
of crystal of µijkl

{E} 21
D2h 9
D4h 6
Oh 3

Table C.8: Independent components of the tensor k -independent tensor µijkl defined
in (C.21).

But let us go back to the 4th rank tensor µijkl. We denote the mth index of µijkl by m.
Then the permutations which are symmetry operations of µijkl, are

(i↔ j) → p = (1 2)(3)(4) with ν1 = 2, ν2 = ν3 = 1

(k ↔ l) → p = (1)(2)(3 4) with ν1 = 2, ν2 = ν3 = 1

((i, j) ↔ (k, l)) → p = (1 3)(2 4) with ν1 = ν2 = 2.

These three permutations generate a subgroup P of Pn. This subgroup consists of 12
elements, all of which leave the tensor µijkl invariant.

The character of a tensor which is invariant under the subgroup P is given by the sum

χP(a) =
1

ordP
∑

p∈P
{χ(a)}ν1{χ(a2)}ν2 · · · {χ(am)}νm , (C.22)

(see [C.2], Eq. (8.5.13)) where χ(a) is the character of a ∈ G in the vector representa-
tion and νi is the length of the cycles in the permutation p. The number of independent
elements nind then is given by (C.18), that is,

nind =
1

ordG
∑

a∈G
χP(a) ,

where ordG denotes the order of the point group G.
For a given group G, we consider (C.22) for the special case of a symmetric second rank

tensor. The permutation group is given by P = {E, (1 2)} where ν1 = 2 for p = E and
ν2 = 1 for p = (1 2). This yields

χsy(a) =
1

2

[
χ(a)2 + χ(a2)

]

which is the character of the symmetric product representation.
In Tab. C.8 we have tabulated the number of independent elements of µijkl for some

given crystal point groups. If the crystal has no point symmetry at all (or is triclinic) then
only the symmetry with respect to the permutation of the tensor indices reduces the number
of independent components of the tensor, in our case from 34 = 81 to 21. Additional point
group symmetries further reduce the number of independent components of the tensor down
to 3 for the cubic case.
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C.9 Classification of Γ-point phonons

according to point group symmetry

The irreducible representations of a point group of a crystal are an indispensable tool for the
classification of the normal vibration modes of the crystal. For one-phonon (dipole) Raman
scattering, only phonons with the full translational symmetry of the crystal, that is, k = 0
or Γ-point phonons are of importance, and will be under consideration exclusively in this
section.

The restriction to k = 0 phonons, and its consequence that the vibrational displacement
patterns have the same translational symmetry as the crystal, allows us to focus on just one
unit cell. When performing the group-theoretical treatment of the phonons, we also have
to identify atoms which are related by a translation of the Bravais lattice. In the case of
a system of two CuO planes, there are 6 independent sites. In the upper plane, there is
one Cu (Cu(2)) site and two O sites (O(2) and O(3)). In the lower plane, there are also
three independent sites, one Cu site and two O sites. The point symmetry group is D4h (see
Fig. C.6).

An important observation is the fact that normal modes transform according to irre-
ducible representations of the point group G of the crystal. If we label the inequivalent
atoms in the primitive unit cells with k = 1, . . . , N , then the relation between the displace-
ment uk of a certain atom k, and the phonon normal coordinate Qs of the phonon labeled
by s = 1, . . . , 3N is given by

uk =
1√
mk

∑

s

Qse
(s)
k . (C.23)

The mass of atom k is denoted by mk, and e
(s)
k are the eigenvectors of the phonon s. The

Hamiltonian is given by

E =
1

2

∑

s

[

Q̇2
s + ω2

sQ
2
s

]

where ωs denotes the frequency of the phonon s. From this equation it becomes clear that
the normal coordinates which belong to a given energy ω, transform according to a certain
representation of the point group G. For cases of no accidental degeneracy, which are the only
ones being considered here, this implies that the normal coordinates transform according to
an irreducible representation of G, and we write

GQs =
∑

s′

Qs′Ds′s(G)

for all G ∈ G. According to C.23, the normal coordinates Qs and the displacements uk

are related linearly. Therefore, we will perform a group-theoretical investigation of the
displacements.

We consider the effect of symmetry operations on the equilibrium position rk and dis-
placement uk of the atom k in the primitive unit cell. The vectors rk transform according
to the vector representation, that is,

Grk = R̂(G)rk = rk′ ,
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Figure C.6: The two CuO planes in two-plane high-Tc superconductors.

the transformation takes the atom from the position k to position k′. For the case of the
displacements, the transformation law is more difficult, because the displacements transform
like vectors, but at the same time, the atoms to which they refer, change place. When the
transformation takes an atom from site k to site k′, then displacement vector of the atom
at site k′ becomes that one of the atom at site k rotated by a rotation matrix,

Guk′ = R̂(G)uR̂−1(G)rk′
= R̂(G)uk .

The N displacement vectors U = (u1, . . .uN)T transform according to a 3N -dimensional
representation R̂3N like

GU = R̂3N (G)U .

The decomposition of the representation R̂3N gives the different irreducible representations of
the normal modes. For the decomposition we only need the character of the representation,
that is, the trace of R̂3N . Only atoms that do not move in the transformation contribute
non-vanishing diagonal elements to R̂3N . For an atom k that does not move, Guk = R̂uk,
where R̂ is a 3 × 3 rotation matrix. The character of R̂ was already calculated in Sect. C.8
and tabulated in Tab. C.7. As a consequence, the character of the representation R̂3N is
given by

χ(3N)(G) = NRχ
(Γ(r))(G) ,

where NR is the number of atoms which are not moved in the transformation represented
by G.

The system shown in Fig. C.6 is composed of 6 independent sites and possesses tetrag-
onal D4h symmetry. In Tab. C.9, the number NR of atoms which are not moved by the
transformation represented by G ∈ G, the character G in the vector representation, and its
product, the character of the representation R̂3N is given for each of the classes of D4h.

The decomposition of the representation R̂3N by using (C.14) and (C.15) is easy now,
and yields the result

2A1g +B1g + 3Eg + 2A1u +B1u + 3Eu .

The displacement patterns which belong to the particular normal modes are determined by
applying the projection operators to the displacement vectors U .
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E 2C4 C2
4 2C ′

2 2C ′′
2 I 2IC4 σh 2σv 2σd

NR 6 2 6 0 0 0 0 0 6 2
χ(Γ(r)) 3 1 -1 0 0 0 0 0 1 1
χ(3N) 18 2 -6 0 0 0 0 0 6 2

Table C.9: For each class of the tetragonal point group D4h, the number NR of invari-
ant atoms of Fig. C.6, the character of the class in the vector representation and in the
representation R̂3N is given.

The modes carrying an index “g” (gerade) are even with respect to the inversion opera-
tion. Therefore they carry no dipole momentum and are forbidden in absorption. The “u”
(ungerade) modes are odd with respect to inversion and are forbidden in Raman scattering
(see next section). The even modes turn out to be Raman active. The odd modes are
active in infrared absorption saved one exception: the A1u and B1u modes. The B1u modes
possesses an odd parity symmetry pattern, but due to the fact that χ(B1u)(C4) = −1, the
dipole momentum vanishes (O(2) and O(3) carry the same ionic charge) and so does the
coupling. This can also be seen in a more formal way. The Raman vertex (in effective mass
approximation, i.e. far from resonance) corresponds to a symmetric 2nd rank tensor and
decomposes in D4h into

symmetric 2nd rank tensor → 2A1g +B1g +B2g + Eg ,

and the vector decomposes into

vector → A2u + Eu .

Therefore, the A1u, B1u, and Eu phonons are Raman active and the Eu phonons are infrared
active. The A1u and B1u phonon, however, are neither Raman- nor infrared-active. They
are called silent modes.

C.10 Selection rules for Raman scattering

by phonons

When talking about selection rules for Raman scattering, one usually refers to the fact that
for different polarization configurations (eL, eS) of the incoming and scattered light, different
excitations can be detected using Raman spectroscopy.

The Raman efficiency S is related to a 2nd rank tensor, the Raman tensor T̂ via the
light polarization unit vectors eS and eL by the relation

S ∼
∣
∣
∣e

∗
S · T̂ · eL

∣
∣
∣

2

.

Certain excitations cause certain non-vanishing matrix elements of the Raman tensor T̂ and
allows for selecting them by an appropriate choice of the light polarization.

We focus on phonon Raman scattering (restricted to Stokes scattering) and discuss its
microscopic mechanism. The basic process leading to phonon Raman scattering is shown
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Figure C.7: The photon-phonon vertex involving an electronic pair-excitation. Note that
there is also another diagram contributing in which the phonon is created by scattering with
the hole.

in Fig. C.7. The incoming photon is annihilated and creates an electron-hole pair. Then
either the electron or the hole scatter and create a phonon. The electron-hole pair finally
recombines and creates the scattered photon. Due to the fact that the velocity of light is
much larger than the Fermi velocity, the transition leading to the electron-hole pair can be
considered to be direct. The transition corresponding to the recombination of the electron-
hole pair has to be direct as well, and therefore the created phonon is a Γ-point phonon.

The vertices related to the creation and the annihilation of the electron-hole pair are
matrix elements of the operators eL ·p and e∗

S ·p, respectively. We use cartesian components
and take the unit vectors out of the expression for the transition amplitude of the process
described by the diagram in Fig. C.7. Then the matrix elements are 〈n1k |pi|nik〉 and
〈nik |pj|n2k〉. They transform like vectors and thus their product like a 2nd rank tensor.

We assume now that it is possible to consider only one phonon in our discussion. This
is given for instance when the other phonons are not very close in frequency to the phonon
under discussion.7 Then, the phonon will not mix with other phonons, and it is enough to
take into account one electron-phonon vertex g. The creation of a phonon is accompanied
by the scattering of an electron (hole) with quasimomentum k from band n1 to n2, and
therefore the vertex g depends on k , n1, and n2 only.

The expression corresponding to the diagram in Fig. C.7, which gives the amplitude
for the process of creating a phonon by inelastic scattering of light (involving an electron-
hole pair), is given by a product of the vertices and three electronic Green’s functions, and
involves a summation 〈·〉 over the Brillouin zone. We write

〈pi(ni → n1, k) · gn1n2;k · pj(n2 → ni, k) · Λnin1n2;k (ω)〉 , (C.24)

where the product of the Green’s functions has been denoted by Λnin1n2;k(ω). This treatment

also shows that the quantity defined in (C.24) is proportional to the Raman tensor T̂ .
The displacement pattern of a Γ-point phonons can be classified8 according to the irre-

ducible representations of the point group of the crystal. We denote the IR which represents
the transformation properties of the displacement pattern of the phonon by µ. Then, the
electron-phonon vertex belongs to the same IR, we write gµ

k .

7Otherwise, a perturbation like anharmonic coupling may mix different modes which belong to the same
IR, but have different energy eigenvalues.

8if there is no accidental degeneracy.
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The matrix elements of the momentum operator in (C.24) transform according to the
components of the vector representation. Hence, the product of both transforms like a 2nd
rank tensor.

Green’s functions transform only by virtue of their dependence on the dispersion relation
of the excitations which they describe. The dispersion relation εk of the electrons is fully
symmetric. Therefore the quantity Λk(ω) in (C.24) is a scalar.

The averaging of the second rank tensor formed by the two momentum matrix elements
and the electron-phonon vertex projects the irreducible representation µ out of the 2nd rank
tensor,9 all other irreducible representations vanish. As a conclusion, the amplitude (C.24)
(which is proportional to the Raman tensor) only yields a non-vanishing contribution to
that component of a the Raman tensor which belongs to the IR µ.

We give an example using the point group C4v . This group describes the point symmetry
of a square. Its group table is given in Tab. C.6.

The representation to which the Raman tensor (as every second rank tensor) belongs
is denoted by Γ(r) × Γ(r) and is the product of two vector representations. Using the
orthogonality relations for characters of representations, the decomposition

Γ(r) × Γ(r) = 2 · A1 + A2 +B1 +B2 + 2 · E

can be given. The projection of the components of the Raman tensor to the different IRs is
performed using projection operators and yields the result

T̂ = T̂A1

1 + T̂A1

2 + T̂A2 + T̂B1 + T̂B2 + T̂E
1 + T̂E

2 , (C.25)

where the components T̂ µ are given by

T̂A1

1 =





a
a



 , T̂A1

2 =





b



 , T̂A2 =





c
−c





T̂B1 =





d
−d



 , T̂B2 =





e
e



 , T̂E
1 =





f
f





T̂E
2 =





g g



 .

(C.26)

From this result is becomes clear, that in parallel polarizations, only A1- and B1-phonons
can be detected. Phonons belonging to other IRs will not appear in the Raman spectrum. On
the other hand, A1- and B1-phonons will not be visible in crossed polarization configurations.

9This can be seen as follows. Denote the product of the momentum matrix elements by Tij , and de-

compose it into irreducible representations Tij =
∑

α T
(α)
ij . The product of the electron-phonon vertex gk

and the function Λk will be denoted by hk . If gk transforms according to the irreducible representation µ,

then hk does so as well, hence we write H
(µ)
k . Then the average 〈T (α)

k ;ijh
(µ)
k 〉 vanishes if α 6= µ. This is

the same is we replace the average 〈·〉 by a sum
∑

k∈star{k0}
· over the star of a particular, but arbitrary

quasimomentum k0. The product T
(α)
k ;ijh

(µ)
k , however, does not vanish necessarily (saved cases when the star

of k consists of just one element).
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One important final note is in order. The selection rules only involve the polarization
vectors, but not the direction of the wavevectors of the incoming and scattered light and,
therefore, are not depending on whether a Raman experiment is performed in backscattering
or forward scattering geometry.
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Appendix D

A short tutorial on Green’s functions

D.1 Introduction

”... It might be noted, for the benefit of those interested in exact solutions,
that there is an alternative formulation of the many-body problem, i.e., how many
bodies are required before we have a problem? G.E. Brown points out, that this
can be answered by a look at history. In eighteenth-century Newtonian mechanics,
the three-body problem was insoluble. With the birth of general relativity around
1910 and quantum electrodynamics in 1930, the two- and one-body problems
became insoluble. And within modern quantum field theory, the problem of zero
bodies (vacuum) is insoluble. So, if we are out after exact solutions, no bodies is
already too many!”
(in: R.D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem)1

Only a few problems in quantum mechanics can be solved exactly. Therefore, one is de-
pendent upon approximation schemes. One of these is perturbation theory. In perturbation
theory, the Hamiltonian H of the system under investigation is split into a “trivial,” that
is, exactly solvable part H0, and a perturbation V and written as

H = H0 + V .

Perturbation theory then uses the knowledge of the solution to H0 (i.e., of its eigenfunc-
tions |n〉0 and eigenvalues E0

n) together with the perturbation V to give an approximation
to the solution of the full Hamiltonian H. In its simplest form, for the case of a one-particle
problem with a discrete non-degenerate spectrum, the eigenvalues En of H are approximated
by En ≈ E0

n + 0〈n|V |n〉0 to first order in V .
It is clear that in the case of a many-particle system, the things are getting much more

complicated, but surprisingly, a very nice and physically transparent perturbation theory
can be given. This perturbation theory is based on Green’s functions which characterize a

1Despite of having taking this citation out of the many-particle book of Mattuck [D.1], most of the
material here resembles quite close the introduction presented in the book of Mahan [D.2] with traces from
the book of Abrikosov, Gorkov, and Dzyaloshinski [D.3]. Also very instructive is the book of Landau and
Lifshitz [D.4]. For those who like to give an eye to applications in physics, the book of Schrieffer [D.5] is
great.

183
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quasi-particle in the sense of Landau’s Fermi liquid theory (see [D.4]. Landau, however, did
not make use of Green’s functions in his theory). We are going to present this theory in the
appendix at hand.

D.2 Second quantization

The first forms of quantum mechanics given by Schrödinger’s wave equation and Heisenberg’s
matrices though originally developed for the description of systems with single particles, can
also be applied to a system with a fixed number N of identical particles. Nevertheless this
is very cumbersome, mainly because of the Pauli principle forcing the wave functions to be
antisymmetric (fermions) or symmetric (bosons) when exchanging two particles. Antisym-
metrizing wave functions (usually done by using a Slater determinants) is rather complicated
and error-prone. Therefore, a different representation for quantum mechanics, the second
quantization, has been developed to remove the problems just mentioned. Indeed, second
quantization removes the problem of antisymmetrizing (or symmetrizing) wave functions—
the formalism of second quantization automatically takes care of that. Additionally, it allows
for the treatment of systems with a varying number of particles, such as phonon or photon
systems, or for the treatment of the superconducting state as formulated in the BCS-theory.

Quantum mechanics, in its original formulation, deals with operators acting on wave
functions. This is also the case in the formulation provided by second quantization. But
the operators used in second quantization are rather different from those in the original
formulation which we call the first quantization. In first quantization we have learned how
to describe a given physical system by means of the Hamilton operator. The description of
the physical system in second quantization is based as well on a Hamilton operator, but its
form is completely different from that of the former. One of our goals here is to show how to
construct the Hamiltonian used to describe a given physical system in second quantization
when the corresponding Hamiltonian for first quantization is given.

Let us first summarize the treatment of a system of a fixed number N of identical particles
in first quantization. If one of the particles is described by the Hamiltonian

h0(p, r) =
1

2m
p2 + U(r) ,

the collection of N identical and not interacting particles is represented by the N -particle
Hamiltonian

H0 =

N∑

i=1

h0(pi, ri) (D.1)

where the operators pi and ri are acting on the particle i. The wave functions of the
N -particle system are

ψ(r1 . . . , rN)

which can be written as a linear combination of the functions

ψk1
(r1) · . . . · ψkN

(rN) ,
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that is, products of single particle wave functions ψk (r) which are usually chosen to be
eigenfunctions of the Hamiltonian h0, and therefore given by

h0ψk (r) = εkψk (r) ,

where k is a quantum number denoting a stationary state of the single-particle Hamilto-
nian h0. In a translationally invariant system or a crystal, this may be the momentum or
quasimomentum, respectively, together with a spin index if the particles under discussion
carry such property. Note that these N -particle wave functions have to be antisymmetrized
(we focus on fermion systems; for bosonic systems, the wave function has to be symmetrized),
and therefore, all the single particle states ki have to be different. Otherwise the wave func-
tion vanishes, expressing the fact that a single-particle state can be occupied only once in
fermionic systems.

A translationally invariant two-particle interaction as for instance the Coulomb interac-
tion is represented in the N -particle system by the Hamiltonian

HI =
1

2

N∑

i,j=1

i6=j

V (ri − rj)

summing over all combinations of two particles. The factor 1/2 compensates for a double-
counting in the sum over i and j.

D.2.1 Creation and destruction operators

In second quantization, new operators are introduced. These are the creation and destruction
operators. Given a state |〉, the creation operator c+λ adds a particle in the single-particle
state ψλ to |〉. If |〉 is an N -particle state, then c+λ |〉 is an (N + 1)-particle state. If the
state |〉 already contains a particle in state λ, the expression c+λ |〉 vanishes. The destruction2

operator cλ works in a similar way. It removes a particle in the single-particle state λ from
the (many-body) state |〉, and destroys the entire many-body state, if such particle was
not there. As the notation suggests, the creation and destruction operators are mutually
hermitian conjugate.

For bosons, creation and destruction operators b+λ and bλ are also defined. They work
similarly to their fermion-colleagues, but allow for a multiple-occupancy of the single-particle
states. That is, the creation operator b+λ never annihilates a state |〉, whether it already
contained particles in the single-particle state λ or not.

These properties of the fermionic and bosonic creation and destruction operators are
guaranteed by anticommutation and commutation rules, respectively. For fermions, the
anticommutators

{cλ, cµ} = {c+λ , c+µ } = 0

{cλ, c+µ } = {c+µ , cλ} = δλµ

(D.2)

guarantee antisymmetry, because cλcµ = −cµcλ, and prevent from double-occupancy because
for µ = λ, we have cλcλ = −cλcλ = 0. The second relation (D.2) taken for µ = λ determines

2We use the terms “destruction operator” and “annihilation operator” interchangeably.
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the eigenvalues of the creation and destruction operators. Applied to a state |〉, it yields
cλc

+
λ |〉 + c+λ cλ|〉 = |〉. If the single-particle state λ is occupied in |〉, the first term in the

sum will vanish whereas the second one reproduces |〉 with a factor of one. If the state is
unoccupied, the first term yields a factor of one, while the second vanishes.

For the bosonic operators, which have to express the fact that many-particle states of a
system composed of identical bosonic particles are symmetric upon exchange of two particles,
the commutation relations

[bλ, bµ] = [b+λ , b
+
µ ] = 0

[bλ, b
+
µ ] = −[b+µ , bλ] = δλµ

(D.3)

hold and describe the fact that single-particle boson states can be occupied multiply.
Note that because of their non-hermiticity, the creation and destruction operators are

not observable. The importance of these operators lies in the fact that all other operators
can be expressed as linear combinations of products of creation and destruction operators.
An example are the particle number operator N , and the Hamiltonian H0, which are given
by

N =
∑

k

nk =
∑

k

c+k ck and H0 =
∑

k

εk c
+
k ck . (D.4)

where nk is the number operator counting the number of particles in the single-particle
state k , and εk is the single-particle dispersion relation. States which are eigenstates to the
particle number operator N contain a fixed number of particles.

We introduce next the rules for determining the form that an operator given in first
quantization assumes the second quantization. One-particle operators of the form O(1) =
∑

iO
(1)(pi, ri) are expressed in second quantization as

O =
∑

αβ

c+αO
(1)
αβcβ with

O
(1)
αβ = 〈α|O(1)|β〉 =

∫

d3r ψ∗
α(r)O(1)(p, r)ψβ(r)

(D.5)

For a two-particle operator

O(2) =
∑

i6=j

O(2)(pi, ri;pj, rj)

its corresponding second quantized operator O becomes

O =
∑

αβγδ

c+α c
+
βO

(2)
αβγδcγcδ with

O
(2)
αβγδ = 〈αβ|O(2)|γδ〉

=

∫

d3r d3r′ ψ∗
α(r)ψ∗

β(r ′)O(2)(p, r ;p ′, r ′)ψγ(r
′)ψδ(r)

(D.6)

The application of these rules to H0 is easy. Suppose the external potential U(r) vanishes.
Then plane waves are eigenstates of the single-particle Hamiltonian h0 (for simplicity we
disregard the spin), and because of the relationship

∫

d3r e−ikαr p2

2m
e−ikβr =

k 2
α

2m
δαβ ,
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the second quantized Hamiltonian for the non-interacting system is given by the equation

H0 =
∑

k

εkc
+
k ck with εk =

k 2

2m
. (D.7)

The translation of a two-particle operator like the Coulomb interaction to the second quan-
tized form is more delicate. According to (D.6), for a system with continuous translational
symmetry we have to evaluate the integral

Vkαkβkγkδ

∫

d3r d3r′ ei(kα−kδ)rei(kβ−kγ)r ′ 4πe2

|r − r ′|

Using kα = k + q , kβ = k ′ − (q + ~δ), kγ = k ′, and kδ = k , the exponentials can be written

as exp(iq(r − r ′)) · exp(−i~δr ′). The fact that the Coulomb interaction just depends on the

difference r −r ′, and not on r and r ′ individually, implies that ~δ = 0, otherwise the integral
would vanish. We are then left with the expression

V
k+q ,k ′−(q+~δ),k ′,k = δ~δ,0

∫

d3r d3r′
e−iq(r−r ′)

|r − r ′| = Ω · 4πe2

q2
δ~δ,0

where Ω is the integration volume. This matrix element only depends on the differences
kα − kδ and kβ − kγ of the momenta of the scattered and incoming electrons, respectively.
This is a consequence of the continuous translational symmetry of the system. The fact
that the interaction depends only on the coordinates through |r − r ′| implies that in the
scattering process the two interacting electrons cannot exchange momentum nor angular
momentum with the rest of the system (this is only valid for free electrons. In a crystal,
the pseudopotential breaks the continuous translational symmetry as well as the rotational
symmetry of the Hamiltonian). The scattering process conserves momentum. Putting the
matrix element under discussion into the expression for the two-particle operator in second
quantization leaves us with the expression

V =
1

2

∑

k ,k ′,q

4πe2

q2
c+k+qc

+
k ′−qck ′ck (D.8)

which can be represented in an obvious way by the diagram in Fig. D.1. Two electrons
with momenta k and k ′ are propagating. Then they interact and continue propagating with
momenta k + q and k ′ − q . The total momentum is conserved, the label q on the dashed
line denotes the momentum transfer.

D.2.2 Normalizations and Fourier transforms

A final word on the normalization of wave functions and, related to that, the use of Fourier
transformations. The Fermion field operators are defined by Ψ(r) =

∑

λ aλψλ(r) using
the single particle wave functions ψλ(r). We work in a box of volume V , therefore the
normalization condition for the wave functions is

∫

V
d3r ψλ(r)ψλ′(r) = δλλ′ . In the case of

free particles, the wave functions are plane waves ψk (r) = V −1/2 exp ikr .
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k k+q

k’ k’−q

q

Figure D.1: The Coulomb interaction.

The Fourier transformation for functions of time is given by the expressions

f(ω) =

∫ ∞

−∞
dt eiωtf(t) and f(t) =

∫ ∞

−∞

dω

2π
e−iωtf(ω)

where the frequency ω is a continuous variable. For functions of space, the Fourier transform
is given by

fk =

∫

V

d3r e−ikrf(r) and f(r) =
1

V

∑

k

eikrfk

whereas the variable k is discrete. The adjacent values of k have a distance of 2π/L,
where V = L3. When having to perform k-space summations, we can convert them to
integrals. This is possible for large V , and done by substituting

1

V

∑

k

→
∫

d3k

(2π)3
and δkk ′ → (2π)3

V
δ(k − k ′) .

When manipulating expressions, we normally use the k-space summations and switch to
integrals only if a k-space sum has to be calculated explicitly.

D.3 The zero-temperature Green’s function

In perturbation theory, the many-body Hamiltonian H is split into a “simple” part H0

(which is solvable exactly, that is, whose eigenfunctions and -energies are known), and a
nontrivial part V , the particle-particle interaction treated as a perturbation. We denote the
known ground state of the Hamiltonian H0 by |0〉, and the ground state of the complete
Hamiltonian H by |GS〉. The latter is often referred to as the exact ground state to dis-
tinguish it from the former. Furthermore, the Hamiltonian H0 is assumed to describe a
collection of systems of identical particles as in (D.1), such that single-particle excitations

c© 1999, Thomas Strohm, www.thomas-strohm.de



D.3. THE ZERO-TEMPERATURE GREEN’S FUNCTION 189

Schrödinger rep. Heisenberg rep. interaction rep.

OS OH(t) = eiHtOSe
−iHt O(t) = eiH0tOSe

−iH0t

ψS(t) = e−iHtψS(0) ψH = ψS(0) ψ(t) = eiH0tψS(t)

Table D.1: Definition of the representations under use.

are defined. Let us denote the wave functions describing these single-particle excitations by
ψλ.

The first definition of the Green’s function is given in the Heisenberg representation, in
which the operators are time-dependent and the wave functions are not (see Tab. D.1). This
allows for a very clear physical interpretation of the Green’s function.

The zero-temperature Green’s function G for a system of electrons is given by the ground-
state expectation value

G(λ, t− t′) = −i〈GS|T{cH,λ(t)c
+
H,λ(t

′)}|GS〉 . (D.9)

In this definition, the Heisenberg operators3 c+H,λ(t) and cH,λ(t
′) create and destroy, respec-

tively, an electron in the single-particle state ψλ, at the time t and t′, respectively. The
state ψλ is an eigenstate of the unperturbed Hamiltonian H0 for the case when the sys-
tem contains exactly one particle. In the Heisenberg representation (see Tab. D.1), the
time-dependence of the c-operators is given by c+H,λ(t) = exp(iHt)c+H,λ(0) exp(−iHt). The
“operator” T is the time-ordering operator. Given two or more time-dependent operators, it
orders these in such a way that the operators with later times are left (“the future is left”),
and, additionally puts a minus sign for each interchange of two fermionic operators (i.e.
anticommuting operators). The interchange of bosonic operators does not alter the sign.
For the special case of two fermionic operators A(t) and B(t′), this means

T{A(t)B(t′)} =

{
A(t)B(t′) for t− t′ > 0
−B(t′)A(t) for t− t′ < 0

and leaves undetermined intentionally the case t = t′.

The physical interpretation of the Green’s function (D.9) for the case t > t′ is as follows.
At the time t′, an electron in the single-particle state ψλ is added to the exact ground
state |GS〉. This electron then propagates in the system and interacts with other electrons
as a consequence of not being in an eigenstate of the full Hamiltonian H. At a later time t,
the electron is removed from the system. The quantity G(λ, t − t′) then describes the
amplitude at the time of this removal. In the special case V = 0 of no present perturbation,
the electron will stay in the state ψλ and the magnitude of G(λ, t − t′) will be one for all
values of t− t′ > 0.

3We will use the Schrödinger-, Heisenberg-, and interaction-representation in this appendix. Operators
or wave functions in the Schrödinger representation either will carry an index “S” or just no time-argument.
The Heisenberg-representation is denoted by an index “H”. In the interaction-representation, operators and
wave functions just carry a time-argument.

c© 1999, Thomas Strohm, www.thomas-strohm.de



190 APPENDIX D. A SHORT TUTORIAL ON GREEN’S FUNCTIONS

D.4 Interaction representation and S-matrix

Although the definition given in (D.9) is physically rather clear, it poses some problems.
First of all, the exact ground state |GS〉 needed to evaluate (D.9) is not known: its determi-
nation is the essential problem of many-body theory. Second, there is no clear separation of
the implications of the free part H0 and the interaction part V of the Hamiltonian H on the
Green’s function. This makes our goal of developing a perturbation theory for the determi-
nation of G unnecessarily difficult. These deficiencies will be remedied by restating (D.9)
in the interaction representation (see Tab. D.1) and introducing the S-matrix. The interac-
tion representation makes the operators as well as the wave functions time-dependent. The
trivial time-dependence generated by H0 is put into the operators, and the nontrivial part,
corresponding to V , is put into the wave functions by writing

O(t) = eiH0tOSe
−iH0t

ψ(t) = eiH0tψS(t) = eiH0te−iHtψS(0) = U(t)ψS(0) ,

where the unitary matrix U(t) = eiH0te−iHt has been introduced. For vanishing perturba-
tion V = 0, this matrix becomes the unit matrix, and therefore the interaction representation
reverts to the Heisenberg representation. The S-matrix S(t, t′) can be defined by means of
the U -matrix,

ψ(t) = S(t, t′)ψ(t′) = U(t)U+(t′)ψ(t′) , S(t, t′) ≡ U(t)U+(t′) (D.10)

it “takes ψ from t′ to t.” The S-matrix contains the time-evolution of the wave functions in
the interaction representation. The properties of the S-matrix are the following:

1. S(t, t′) ≡ 1 if V = 0

2. S(t, t) = 1

3. S(t, t′)S(t′, t′′) = S(t, t′′) (transitivity)

4. S+(t, t′) = S(t′, t) (time reversal).

The most important of these properties is the third one, it allows for the connection of two
subsequent time-evolutions.

Just by calculating the time-derivative of the definition of the U -matrix, we can give the
differential equation

d

dt
U(t) = −iV (t)U(t) (D.11)

which together with the condition U(0) = 1 can be used to determine U(t) and, therefore,
by (D.10) the S-matrix S(t, t′). The solution for U(t) is given by integrating (D.11) once
and iterating this process. This yields the series

U(t) = 1 − i

∫ t

0

dt1 V (t1) + (−i)2

∫ t

0

dt1

∫ t1

0

dt2 V (t1)V (t2) + · · · (D.12)

which is an exact solution to (D.11). However, (D.12) is rather inconvenient because of the
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B

A

1 2t  > t

t1

t2

t

t

Figure D.2: The integration volume for the correction to the S-matrix in second order
perturbation theory.

complicated integration limits, which, for the case of the term of second order in V are given
by region A in Fig. D.2. Exchanging t1 and t2 in the term of second order in V changes the
integration region from region A to region B, but leaves the integral (D.12) unchanged. In
both cases A and B, the two operators V (t) in the integral are ordered in such a way that the
operator acting at the later time is to the left. Therefore, the integral under consideration
is equivalent to

(−i)2

2

∫ t

0

dt1

∫ t

0

dt2 T{V (t1)V (t2)} ,

where the integration region is now a square. Arguing along the same lines for the other
terms in the series (D.12), it can be shown that this series can be written in the form

U(t) = 1 +

∞∑

n=1

(−i)n

n!

∫ t

0

dt1 · · ·
∫ t

0

dtn T{V (t1) · · ·V (tn)} . (D.13)

If we use the definition of the exponential function and the convention that the time-ordering
operator T operating on the exponential function is equivalent to operating on every term
in the corresponding series expansion individually, the S-matrix (D.10) is given by the
expression

S(t, t′) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtn T{V (t1) · · ·V (tn)}

= T exp

(

−i
∫ t

t′
dt0 V (t0)

) (D.14)

with the perturbation Hamiltonian V in the interaction representation.
By just introducing the interaction representation, our main problem that the exact

ground state |GS〉 is unknown, remains unsolved. But the S-matrix is the key to solve
it. Gell-Mann and Low [D.6] have proven a theorem which states that the exact ground
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state |GS〉 (which is time-independent in the Heisenberg representation) is given by

|GS〉 = S(0,−∞)|0〉 .

The exact ground state can thus be generated by applying the evolution generated by the
S-matrix from t = −∞ till t = 0 to the known ground state |0〉 of the unperturbed part of
the Hamiltonian H0.

Because of time reversal symmetry, it is clear that by applying the operator S(∞, 0) to
the exact ground state |GS〉, we will recover the ground state |0〉 of H0 up to a phase.4 That
is,

S(∞, 0)|GS〉 = eiϕ|0〉 or 〈0|S(∞,−∞)|0〉 = eiϕ ,

which is a very important relation allowing us to write the bra-vector 〈GS| as

〈GS| = 〈0|S(−∞, 0) =
〈0|S(∞, 0)

〈0|S(∞,−∞)|0〉 .

We apply the results derived in the discussion above and especially the relation cH,λ(t) =
S(0, t)cλ(t)S(t, 0) to the Green’s function (D.9). This yields

〈GS|cH,λ(t)c
+
H,λ(t

′)|GS〉

=
〈0|S(∞, t)cλ(t)S(t, t′)c+λ (t′)S(t′,−∞)|0〉

〈0|S(∞,−∞)|0〉
(D.15)

for t > t′ and an analogous expression for t < t′. The numerator of (D.15) is written now
in a very transparent form. At the right, one starts with the (known!) ground state |0〉,
which evolves in time from −∞ to t′, then an electron in state λ is added. The resulting
many-particle state evolves in time till t, where an electron in the same state λ is removed.
The new many-particle state then evolves in time until ∞ and is eventually projected onto
the ground state |0〉. The denominator just represents a phase making the right hand side
of (D.15) equal to the left hand side if the c-operators on both sides of the equation are
removed.

Condensing again the notation by introducing the time-ordering operator, we can collect
the 3 S-matrices in the expression above (note that S(t, t′) is a bosonic operator) and
eventually arrive at

G(λ, t− t′) = −i〈0|T{cλ(t)c
+
λ (t′)S(∞,−∞)|0〉

〈0|S(∞,−∞)|0〉 (D.16)

which is the form of the Green’s function used as the starting point for the perturbation
theory. We note again that the operators in (D.16) are understood to be in the interaction
representation. The state |0〉 is the ground state of H0.

In the form (D.16), all the nontrivialities are hidden in the S-matrix, which can be
written easily as a power series in the perturbation V as was done with U(t) in (D.13).

4We suppose that the ground state is a non-degenerate state. This is not the case in the strict sense for
isotropic systems with a magnetic low-temperature phase or for gauge invariant systems with a supercon-
ducting low-temperature phase. These systems possess a continuous symmetry which is not a symmetry of
the ground state, but commutes with the Hamiltonian. This effect is called spontaneous symmetry breaking.
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All other elements of (D.16), the single-particle wave functions used in the definition of the
c-operators, the ground state |0〉 of H0, and the dynamics of the c-operators is given by the
nonperturbed part H0 of the Hamiltonian.

The only difficulty in (D.16) is the S-matrix in the denominator, which can be written
as a power series in the perturbation V . We will see later, that the expectation value in the
denominator of the Green’s function will cancel some terms arising in the series expansion
of the S-matrix in the numerator, and therefore poses no problem.

D.5 The bare electron Green’s function

As an example for a Green’s function, we calculate the bare electron Green’s function, which
is the Green’s function for the case of a vanishing perturbation V = 0. This case is par-
ticularly important, because the perturbation theory will eventually give rise to a rule for
the calculation of the Green’s function for the nontrivial case V = 0 from the bare Green’s
function G(0)(λ, t− t′) and the perturbation V .

We use Eq. (D.16) as a starting point for the calculation and note that a vanishing
perturbation V implies that the S-matrix becomes the unit matrix. The bare Green’s
function, then, is given by the expression

G(λ, t− t′) = −i〈0|T{cλ(t)c+λ (t′)}|0〉 ≡ G(0)(λ, t− t′) . (D.17)

We distinguish now two main cases for the ground state of the many-electron system. The
first is given by a system allowing for a varying number of particles, or, resulting in the
same bare Green’s function, one electron in an otherwise empty band . Then the ground
state is the vacuum containing no particles at all. The other—and more frequent—case
is the one of a degenerate electron gas which is a model for a metal or a heavily doped
semiconductor.5 These systems contain a large but fixed number of electrons, and therefore
the ground state, called Fermi sea |FS〉, is the state with the lowest energy for a fixed number
of N particles and may be represented by the Fermi surface which separates the occupied
from unoccupied states in k-space. We are talking here about the ground state |0〉 of the
unperturbed system H0. A Fermi surface, though, also exists in many systems exhibiting
particle-particle interactions. In spherical systems, the Fermi surface is a sphere of radius kF

in k-space. The Fermi sea plays the role of the vacuum state for a degenerate electron gas.

D.5.1 An empty band

For the case of a system with a varying number of particles, the bare Green’s function is
particularly simple. The electron destruction operator cλ(t) applied to the ground state |0〉
(which corresponds to the particle vacuum) always gives zero. As a consequence, the bare
Green’s function (D.17) vanishes identically for the case t < t′. For t > t′, the creation
operator is applied to the ground state resulting in the state c+λ |0〉 which has an energy
of ελ. The expectation value 〈0|cλc+λ |0〉 turns out to be one, and hence the bare Green’s
function is given by

G(0)(λ, t− t′) = −i · θ(t− t′) · e−iελ(t−t′) . (D.18)

5Doped in such a way that at least the dopant wave functions overlap, and therefore create a band rather
that isolated levels.
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Perturbation theory usually is formulated in k-space rather that in real space, so we also
will give the Fourier transform of the bare Green’s function defined by

G(λ, ω) =

∫ ∞

−∞
dt eiωtG(λ, t) . (D.19)

This integral, however, does not converge for the bare Green’s functionG(0) defined in (D.18).
Hence, we are forced to introduce a convergence factor exp(−δt) with δ = 0+ to the exponen-
tial function in the integrand of (D.19). Because of the fact that the bare Green’s function
vanishes for negative times, this guarantees the existence of the Fourier transform, which
becomes

G(0)(λ, ω) =
1

ω − ελ + iδ

and is just a simple pole in the lower half of the complex frequency plane at ω = ελ. The
poles of the Green’s function corresponds to the excitation energies of the system.

D.5.2 The degenerate electron gas

We already mentioned that the filled Fermi sea |FS〉 plays the role of the vacuum state
for a degenerate electron gas. When working with this ground state, it is important to
consider that an electron k can only be added to the ground state, if |k | > kF . In the other
case |k | < kF , an electron can only be removed from the Fermi sea. This removal can be
considered as the creation of a hole. The removal of an electron kσ removes a momentum k

and a spin σ as well as the energy εk from the system. The creation of the hole has to have
the same effect with respect to these quantities, therefore we conclude that the hole has a
momentum, spin, and energy −k , −σ, and −ε, respectively.

Let us focus now the evaluation of the Green’s function (D.17). We consider the case t >
t′, call the energy of the Fermi sea E0, and conclude from

〈0|eiH0tcke
−iH0(t−t′)c+k e

−iH0t′ |0〉 = 〈0|eiE0tcke
−i(E0+εk)(t−t′)c+k e

−iE0t′ |0〉

and the fact that the operator c+k can create an electron only above the Fermi surface, that

G(0)(k , t− t′) = −ie−iεk (t−t′)Θ(k − kF ) .

For the case t < t′, we can carry out a similar calculation or simply infer the Green’s function
from that for t > t′ while taking into account that we have to (1) exchange t and t′, (2) put
an overall minus sign for the exchange of the operators, (3) exchange εk by −εk , because
an electron is removed now, and (4) replace Θ(k− kF ) by Θ(kF − k), because electrons can
only be removed below the Fermi surface. Combining the result obtained in this manner
with that obtained above, the Green’s function for the degenerate electron gas becomes

G(0)(k , t− t′) = −i[Θ(t− t′)Θ(k − kF ) − Θ(t′ − t)Θ(kF − k)]e−iεk (t−t′) ,

and performing the Fourier transformation of the function in time-space yields the expression

G(0)(k , ω) =
1

ω − εk + iδ sign(k − kF )
(D.20)
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which has a pole in the lower frequency planes for energies above the Fermi surface and pole
in the upper half plane for energies below the Fermi surface.

It is often very practical to measure the energy of the electrons in the degenerate electron
gas with respect to the Fermi surface. We therefore try to modify the formalism used so far in
such a way that instead of the energy εk the energy ξk = εk −µ measured with respect to the
chemical potential µ (which depends on the particle number N) appears. A simple redefini-
tion of the energy scale, however, is only possible if we restrict ourselves to particle-number
conserving excitations. In the more general case, we use a new representation of many-body
theory, in which not anymore the particle number N , but the chemical potential µ is given.
Then, the exact ground state is no longer determined by minimizing 〈GS|H|GS〉 while keep-
ing 〈GS|N |GS〉 constant. Instead, the expression 〈GS|H − µN |GS〉, when minimized, gives
a µ-dependent state |µ〉 which corresponds to the exact ground state, if we put the chemical
potential µ determined by the condition 〈µ|N |µ〉 = N0.

Then, in the definition of the Green’s function G(t) the operator H0 giving the time-
dependence of the c-operators is replaced by the combination H0 − µN . Taking into con-
sideration that the particle number commutes with the Hamiltonian H0, it can be seen that
the Green’s function G(µ)(t) defined for a fixed chemical potential is connected to the one
defined for a fixed number of particles by the relation G(µ)(t) = G(t) · exp iµt. In the Fourier
representation, therefore, the frequency ω in the expression for G(ω) has to be replaced
by ω+ µ in order to get G(µ)(ω). Then, using the energy ξk = εk − µ measured relatively to
the Fermi energy, the expression

G
(0)
(µ)(k , ω) =

1

ω − ξk + iδ sign ξk
(D.21)

results for the bare Green’s function of a degenerate electron gas for a fixed chemical poten-
tial µ.

We see that the Green’s function in frequency-space has a particularly simple form: for a
given momentum k it consists of a simple pole (of residue 1) at the single-particle excitation
energy ξk . In order to describe electrons (ξk > 0) and holes (ξk < 0) with one single Green’s
function, the pole, if related to an electron, is located in the lower frequency half plane. If
related to a hole, the pole is in the upper half of the complex frequency plane.

D.6 Perturbative evaluation of the

Green’s function

D.6.1 Expansion of the S-matrix

For the purpose of evaluating the Green’s function, we are going to focus on its numerator
of (D.16). We expand the S-matrix in a series in the perturbation V using (D.14). Then, a
typical term in the expansion looks like

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn 〈0|T{cλ(t)c+λ (t′)V (t1) · · ·V (tn)}|0〉 . (D.22)

The perturbation V in general will always consist of a number of electron creation and
annihilation operators, and also of operators creating and annihilating other elementary
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excitations. We give two examples. In the first example, the Coulomb interaction only in-
volves electronic excitations. Two electrons take part in the Coulomb interaction, therefore,
two creation and two annihilation operators will come into the game. In the Schrödinger
representation, the interaction is given by (D.8). In the interaction representation all four
operators in the Coulomb interaction are taken at the same time.

kn,

λ, q
k+qn’,

Figure D.3: The electron-phonon interaction.

The second example is the electron-phonon interaction which is represented by the equa-
tion

V =
∑

q ,k

Mλ,n,n′

q ,k c+n′,k+qcn,k (aqλ + a+
−qλ) (D.23)

which describes the annihilation of a phonon of momentum q and branch index λ (by the
operator aqλ) while scattering an electron from band n and momentum k to band n′ and
momentum k +q (see Fig. D.3). This electron scattering process may also be related to the
creation of a phonon with momentum −q and branch index λ (given by the operator a+

−qλ).

Both processes have the same amplitude which is given by Mλ,n,n′

q ,k . Therefore, the two
phonons under discussion are usually considered to be one phonon excitation by introducing
the operator Aqλ = aqλ +a+

−qλ. The transition to the interaction representation is performed
again by writing the three operators in former equation in the interaction representation
individually.

From the discussion given above, we conclude that the ground state expectation value
in (D.22) can be considered for all practical purposes as consisting of an equal number of
electron creation and destruction operators, taken at particular times, in the interaction rep-
resentation and creation and destruction operators of other excitations, for instance phonon
excitations. As a matter of fact, operators to different excitation types commute. Therefore
the time-ordered product of a collection of, say, electron creation and destruction operators
and phonon operators is equal to the time-ordered product of the electron operators times
the time-ordered product of the phonon operators. The expectation value of this product
can be separated into an expectation value of electron operators times an expectation value
of phonon operators, respectively. Hence, we are going to discuss the ground state expecta-
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tion value of the time-ordered product of a collection of m electron creation and m electron
annihilation operators.

D.6.2 Time-ordering, pairing, and Wick’s theorem

The expectation values of time-ordered products of creation and destruction operators like
the one in (D.22) with V from (D.23) involve considerable complexity due to the presence of
the time-ordering operator. A number of 2m operators, taken at different times, allows for
up to (2m)! different time-orderings. Fortunately, most of these ordered products vanish,
and the time-ordering can be reformulated in a relatively simple manner. This reformulation
is based on Wick’s theorem. Before stating the theorem, we introduce some concepts which
are important for its application.

Consider the expectation value

〈0|T{cα(tα)c+β (tβ)cγ(tγ)c
+
δ (tδ)}|0〉 . (D.24)

We assume a certain relation for the time arguments, say tδ > tα > tγ > tβ, and perform
the time-ordering. This leads to

+〈0|c+δ cαcγc+β |0〉
(we suppress the time arguments from now on). The term has a positive sign because an
even number of 4 transpositions is needed for the reordering of the operators.

The concept of pairing is based on the following observation. The operator c+β adds
an electron in state β to the ground state. If this electron is not removed later on, the
expectation value above will vanish. In other words, either α has to be equal to β, or γ has
to be equal to β. For all other cases, the expectation value vanishes. This yields

〈0|c+γ cαcγc+α |0〉δαβδγδ + 〈0|c+α cαcβc+β |0〉δαδδβγ , (D.25)

and the number of two terms in this expression reflects the fact that there are two possibilities
to pair two creation operators with two destruction operators. A product of m creation
and m annihilation operators allows for m! different pairings.

The operators in expression (D.25) may be regrouped. This regrouping is done in such
a way that the ordering of operators to the same states is not altered because this would
produce an extra term according to {c, c+} = 1. Again we take into account that an odd
number of transpositions of the operators yields a minus sign, and arrive at the expression

−〈0|c+γ cγcαc+α |0〉δαβδγδ + 〈0|c+α cαcβc+β |0〉δαδδβγ .

Note that in the first term of this expression, first an electron in state α is created, and
subsequently removed. After the removal of this electron, we are back in the ground state,
because the creation and destruction operators are creating and annihilating electrons in
the eigenstates of H0, and the ground state is meant to be the ground state of H0. The
dynamics added when introducing the interaction representation is the dynamics which is
caused by the Hamiltonian H0 also. Therefore, the electron created in state α will stay in
this state. Hence, the expectation values in the equation above can be split into expectation
values of products of one creation and one destruction operator,

〈0|c+γ cγ |0〉〈0|cαc+α |0〉δαβδγδ − 〈0|c+α cα|0〉〈0|cβc+β |0〉δαδδβγ .
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This is equivalent to (D.24) for the given time relation. The ground state expectation values
only contain products of a creation and a destruction operator and, therefore, are very
similar to the known bare Green’s function. Wick’s theorem expresses expectation values of
the form (D.24) as sums of products of bare Green’s functions.

Wick’s theorem can be stated in the form of a handy rule:

• To calculate an expectation value of a time-ordered product of m creation and m
annihilation operators, add all possible different pairings of creation and annihilation
operators which amount to m!.

• To pair a creation and a annihilation operators means to bring them together (the
annihilation operator to the left of the creation operator) by repeated transpositions
while taking care of the sign. Then replace the pair by the time-ordered ground state
expectation value of the pair.

For a proof of Wick’s theorem, refer to [D.3], Sect. 8.2.

After having applied Wick’s theorem, the expectation value under consideration is ex-
pressed as a sum of products made up of the factors

〈0|T{cλ(t)c+λ′(t
′)}|0〉 =

= δλλ′ ×
{
iG(0)(λ, t− t′) for t 6= t′

−〈0|c+λ (t)cλ(t)|0〉 = −θ(ξλ − ξF ) for t = t′ .

(D.26)

Sometimes, the Fermi function nF (ξλ) = nF (ελ − µ) is used instead of the factor θ(−ξλ).
For T = 0 formalism, this is exactly the same.

D.6.3 Feynman diagrams

As an example we calculate the numerator of the Green’s function for the system H = H0+V
where H0 is the Hamiltonian of the free Fermi gas (D.7), and V is the electron-phonon
coupling mentioned above. We shall consider only one phonon branch, one electronic band,
and a electron-phonon matrix element independent of the electron momentum k , that is

V =
∑

q

Mqc
+
k+qckAq (D.27)

with Aq = aq + a+
−q . The contribution of nth order in the perturbation V to the numerator

of the Green’s function is given by (D.22). It is obvious that the contribution of zeroth order
in V leads to the bare Green’s function G(0). Furthermore, the contribution to the Green’s
function of first order in the perturbation V vanishes, because the expectation values of one
phonon operator 〈0|Aqλ|0〉 are equal to zero. Hence we focus on the contribution of second
order in V . Taking care on the prefactor, this reads

(−i) · (−i)2

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 〈0|T{ck(t)V (t1)V (t2)c

+
k (t′)}|0〉 . (D.28)
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By replacing the perturbation V in the interaction representation into (D.28), and separating
phonon operators from electron operators we find

(−i)3

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∑

q1,q2

Mq1
Mq2

〈0|T{Aq1
(t1)Aq2

(t2)}|0〉×

×
∑

k1,k2

〈0|T{ck(t)c+k1+q1
(t1)ck1

(t1)c
+
k2+q2

(t2)ck2
(t2)c

+
k (t′)}|0〉 .

(D.29)

The first expectation value in this expression can be written in terms of the (bare) phonon
Green’s function D(0)(q , t1 − t2)

iδq1+q2,0D
(0)(q1, t1 − t2) ,

where D(0)(q , t1 − t2) is defined as

D(0)(q , t1 − t2) = −i〈0|T{Aq(t1)A−q(t2)}|0〉 . (D.30)

The phonon Green’s function will be discussed later in this appendix. The second expecta-
tion value has to be decomposed into combinations of the bare electron Green’s function by
making use of Wick’s theorem. We find the 3! = 6 different pairings6

〈T{ck(t)c+k1+q1
(t1)ck1

(t1)c
+
k2+q2

(t2)ck2
(t2)c

+
k (t′)}〉

= 〈T{ck(t)c+k1+q1
(t1)}〉 · 〈T{ck1

(t1)c
+
k2+q2

(t2)}〉 · 〈T{ck2
(t2)c

+
k (t′)}〉

+ 〈T{ck(t)c+k2+q2
(t2)}〉 · 〈T{ck2

(t2)c
+
k1+q1

(t1)}〉 · 〈T{ck1
(t1)c

+
k (t′)}〉

− 〈T{ck(t)c+k1+q1
(t1)}〉 · 〈T{ck1

(t1)c
+
k (t′)}〉 · 〈T{ck2

(t2)c
+
k2+q2

(t2)}〉
+ 〈T{ck(t)c+k (t′)}〉 · 〈T{ck1

(t1)c
+
k1+q1

(t1)}〉 · 〈T{ck2
(t2)c

+
k2+q2

(t2)}〉
+ 〈T{ck(t)c+k2+q2

(t2)}〉 · 〈T{ck1
(t1)c

+
k1+q1

(t1)}〉 · 〈T{ck2
(t2)c

+
k (t′)}〉

− 〈T{ck(t)c+k (t′)}〉 · 〈T{ck1
(t1)c

+
k2+q2

(t2)}〉 · 〈T{ck2
(t2)c

+
k1+q1

(t1)}〉 .

(D.31)

Note again that expectation values have been ordered such that the creation operator is
placed to the right of the destruction operator, and in addition, a time ordering operator
has been added. The expectation values in (D.31) can be expressed as bare Green’s functions
or as a Fermi function nF according to (D.26). Performing this step and noting that the
factor δq1+q2,0 = 0 is already present in (D.29), we obtain

(a) = i3δk ,k1+q1
δkk2

G(0)(k , t− t1)G
(0)(k − q1, t1 − t2)G

(0)(k , t2 − t′)

(b) = i3δkk1
δk ,k2−q1

G(0)(k , t− t2)G
(0)(k + q1, t2 − t1)G

(0)(k , t1 − t′)

(c) = i2δkk1
δq1 ,0nF (ξk2

)G(0)(k , t− t1)G
(0)(k , t1 − t′)

(d) = iδq1,0nF (ξk1
)nF (ξk2

)G(0)(k , t− t′)

(e) = i2δq1,0δkk2
nF (ξk1

)G(0)(k , t− t2)G
(0)(k , t2 − t′)

(f) = −i3δk1,k2−q1
G(0)(k , t− t′)G(0)(k1, t1 − t2)G

(0)(k1 + q1, t2 − t1)

(D.32)

The terms have been written in the same order as in the equation above. Some of the
Kronecker δ-functions in (D.32) drop out, because they identically vanish.

6we have shortened a bit the notation writing 〈· · ·〉 as an abbreviation for 〈0| · · · |0〉.
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Figure D.4: Feynman diagrams for the renormalization of the electron Green’s function by
phonons to second order in the electron-phonon coupling matrix element.
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This expression is still rather cumbersome but fortunately it can be expressed by phys-
ically very intuitive diagrams, the Feynman diagrams. In the time domain the rules for
associating a Feynman diagram to an expression like one of the six above are as follows.
Each bare Green’s function G(0)(k , t − t′) is represented by a small straight line carrying
a quasimomentum k and reaching from the time t′ to t. The line also includes an arrow
denoting a direction. The meaning of this arrow will be explained later. It does not imply
that t′ < t. Nor does it imply that the line represents an electron if the arrow points from
left to right and a hole, if it points from right to left. A Green’s function with t = t′, that
is, a factor nF , is represented by a small circle. The direction of the line forming the circle
is arbitrary and has no consequences.

A phonon is represented by a wavy line. It does not carry an arrow because the phonon
Green’s function is even in the time argument. The representations of the Coulomb interac-
tion and also of photons will be given later. We can already surmise that the representation
of photons (also other bosons) will be isomorphic to that of phonons.

We discuss now the 6 diagrams of Fig. D.4), starting with the one denoted by (a) and
construct its associated Feynman diagram. The third Green’s function from the left in
expression (a) of (D.32) represents an electron propagating from t′ to t2 and having a quasi-
momentum of k . We denote it by a line from t′ to t2 with a label k . At the time T2 two
things happen. First, the electrons continues propagating, from t2 to t1, with a momentum
of k − q1. Second, a phonon carrying the missing q1 is created. We draw an electron line
to t1 and start a new wavy phonon line at t2. At t1, the phonon is destroyed, and the
electron continues to propagate with its initial momentum k to t. The contribution of this
diagram to the numerator of the Green’s function (the term (D.29)) is given by the term

i

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∑

q

|Mq |2D(0)(q , t1 − t2)×

×G(0)(k , t− t1)G
(0)(k − q , t1 − t2)G

(0)(k , t2 − t′) ,

(D.33)

it has to be taken into account that M−q = M∗
q . The nodes at t1 and t2 in the diagram in

Fig. D.4(a) are called vertices and are related to the electron-phonon matrix element Mq .
One of the vertices represents the creation of a phonon, the other the destruction of a phonon.
Therefore, the matrix element Mq appears as a complex conjugated pair: the matrix element
for a time reversed process is the complex conjugate of that for the direct process.

In the diagram, the quasimomentum q is summed over. In this way all possible phonons
are included. The time integrations show that the way a diagram is drawn or the arrows
are put on the electron lines does not imply any time ordering. The arrows denote particle
number conservation at the vertices.

The diagram in Fig. D.4(b) is very similar to that in Fig. D.4(a). The only difference is
the labeling of some of the variables. It can be shown that there are always n! diagrams in
the nth order perturbation contribution which are equal in the sense that their contribution
to the Green’s function is the same. The related diagrams then are called topologically
equal , which means that by relabeling internal variables, the diagrams become identical.
When using perturbation theory one only draws one representative of these n! topologically
identical diagrams, and removes the factor 1/n! in the corresponding perturbation term.

Let us proceed with the diagram Fig. D.4(c). This time we have an electron propagating
from t′ to t1, and then from t1 to t. In both cases it carries a quasimomentum k . At the
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time t1, a phonon is created. Because of the factor δq1,0 in the expression for the diagram (c),
this must be a Γ-point phonon. At t2 this phonon is destroyed. Correspondingly, the
factor nF (ξk2

) appears. We recall the fact that this is a Green’s function with the time
argument t1 − t1. Therefore we draw this factor as a loop formed by an electron line. The
loop is attached to the time t1 (and similarly to t2).

The diagrams (d) and (e) are constructed in a similar manner, and also contain a Γ-point
phonon. This phonon has no dynamics,7 it corresponds to static strain which is meant to
be not included in the Hamiltonian H. Therefore, they vanish.

The last expression is represented by diagram (f). We start with its first Green’s func-
tion which denotes an electron traveling from t′ to t. At t1, an electron with momentum k1

and a phonon with quasimomentum q1 are created. Furthermore, an electron with quasi-
momentum k1 + q1 is destroyed. This is necessary to conserve particle number and the
quasimomentum. At time t2 a similar annihilation happens.

Note that the diagrams (d) and (f) have a very particular property: they decay into
separable, independent parts. Diagram (f), for instance, is just given by a bare Green’s
function G(0)(k , t− t′) times some factor. It can be shown that the contributions arising
from these separable parts, whose related diagrams are called disconnected diagrams, exactly
cancel the factor 〈0|S(∞,−∞)|0〉 in the denominator of the Green’s function.

D.6.4 Reformulation in the frequency-domain

Before concluding this section and stating the Feynman rules, which tell how to determine
the contributions of nth order perturbation theory to the Green’s function, we write the
diagrams and their corresponding mathematical expressions in the frequency domain by
performing a Fourier transformation of the Green’s function. It will turn out that this
introduces a further simplification in the perturbation series for the Green’s function. We
have seen in the paragraphs above (refer, e.g., to (D.33)) that the time integrals over the
products of Green’s function have the form of a convolution; the individual Green’s functions
in the integrand depend on time via differences ti − ti+1. By expressing the calculations in
the frequency domain, these convolutions become simply products.

How this Fourier transformation is performed, and what implications it has, will be
explained using as an example the contribution shown in Fig. D.4(a) to the Green’s function,
or, respectively, Eq. (D.33). In this expression, we replace the Green’s functions by the
corresponding frequency-dependent Green’s functions

G(k , t− t′) =

∫
dω

2π
e−iω(t−t′)G(k , ω) ,

and similarly for the phonon Green’s function. This introduces the four factors exp−iν(t1−
t2), exp−iω(t − t1), exp−iω′(t1 − t2), and exp−iω′′(t2 − t′) for the bare phonon and the
first, second, and third bare electron, respectively. Collecting all these terms together, the
time dependent part of (D.33) becomes

∫

dt1

∫

dt2 e
−iωte−i(ω′+ν−ω)t1e−i(ω′′−ν−ω′)t2eiω′′t′

7This is only true for acoustic phonons, but not for optical phonons.
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which, when integrated, gives rise to the two δ-functions 2πδ(ω ′+ν−ω) and 2πδ(ω′′−ν−ω′)
which guarantee the conservation of energy at the vertices (the vertices correspond to the
nodes in the Feynman diagram, places where 2 or more lines are joined) and remove the
integrals over the internal frequencies ω′ and ω′′ introduced by the Fourier transformation.
Then, only the factor exp(−iω(t− t′)) is left which resembles the one in the Fourier trans-
formation of the whole expression (D.33). The diagram given in Fig. D.4(a) corresponds
consequently to the diagram in Fig. D.5 when working in frequency space, whereas the
corresponding contribution to the frequency-dependent Green’s function becomes

i

2!

∑

q

|Mq |2G(0)(k , ω)

[∫
dω

2π
D(0)(q , ν)G(0)(k − q , ω − ν)

]

G(0)(k , ω) . (D.34)

Comparing this expression to the diagram in Fig. D.5, we notice some important points
related to Feynman diagrams. (i) the incoming and the outgoing bare Green’s functions
which carry the same indices as the Green’s function G(k , ω) to which they contribute. This
is clearly related to (ii), the conservation of quasimomentum and energy (i.e. frequency) at
each of the vertices of the diagram. For the case of the two quasimomenta, this conservation
was already introduced when building pairs according Wick’s theorem, and ultimatively are
a consequence of the translational invariance of the system under consideration (here it does
not matter whether there is a “full” continuous translation like the translation group of space,
or “only” discrete translations like those imposed by a Bravais lattice). The conservation of
energy was introduced when performing the Fourier transformation, and relates to the fact
that the Green’s function is a function of time differences only.

(iii) All internal lines (i.e. all lines but the incoming and outgoing ones) are given in-
ternal quantum numbers (i.e. q), which only have to satisfy the momentum and frequency
conservation at each vertex. If many possibilities are compatible with this constraint, they
are summed over as in the case of (D.34) for the variables q and ω.

k,ω
ω’ =ω−ν

=ν+ω’=ω’’,ωk

q

k−q

,ν

Figure D.5: A Feynman diagram in frequency space.

D.6.5 A conclusion: the Feynman rules

In addition to introducing the Feynman diagrams, the example above has demonstrated some
basic principles. The first is the cancellation of the ground state expectation value of the
S-matrix. Those terms in the numerator of the Green’s function (D.16) which correspond to

c© 1999, Thomas Strohm, www.thomas-strohm.de



204 APPENDIX D. A SHORT TUTORIAL ON GREEN’S FUNCTIONS

nonconnected diagrams exactly cancel the denominator in (D.16). The second one deals with
the topologically equivalent Feynman diagrams. The nth order (in V ) term in the numerator
of the Green’s function yields n! Feynman diagrams which are topologically equivalent, that
is just differ by a different labeling of integration (or sum) variables.

Taking these principles into account, we can state that the Green’s function is given by
a formula much simpler than that in (D.16):

G(k , t− t′) = −i〈0|T{ck(t)c+k (t′)S(∞,−∞)}|0〉diff, con

where the index “diff, con” indicates that only topologically different and connected (i.e. not
disconnected) contributions are considered.

Reformulating this statement, and including the rules for drawing diagrams, we arrive
at Feynman’s rules for the calculation of the contribution to the Green’s function arising as
an nth order perturbation in V .

Feynman rules: When intending to calculate the contribution to the electron Green’s
function8 iG(k , ω) arising in nth order perturbation theory from electron-phonon coupling
(here, n = 2m, all other contributions vanish), we

• draw all topologically different, connected diagrams which consist of an incoming and
an outgoing bare Green’s function, and contain n/2 internal phonon lines and n −
1 electron lines. To the electron lines, arrows are added which represent particle
conservation at the vertices of the diagram. Then,

• the incoming and outgoing electron Green’s functions are labeled with momentum k

and frequency ω, and the internal lines are all also labeled with internal momentum
and frequency variables taking into consideration the conservation of momentum and
frequency at each of the vertices (This depends on the direction of the arrow in the
case of electron lines).

• When translating the Feynman diagram to an analytic expression, we write G(0)(k , ω)
for each of the electron lines carrying labels k , ω. The direction in which the arrow on
the electron line points does not matter. We write D(0)(q , ν) for a phonon line with
labels q , ν.

• Then each pair of vertices terminating phonon lines is represented by the squared
electron-phonon matrix element |Mq |2/Ω (Ω is the integration volume).

• As a next step, all the internal quasimomenta are summed over and all the internal
frequencies are integrated over by inserting the appropriate sums and integrals

∑

q

and
∫
dω/(2π).

• Finally, we put a factor in(−1)F (2S + 1)F where F is the number of closed fermion
loops, and S denotes the spin quantum number of the electrons.

8Note the factor i in front of the Green’s function. The rules presented here are valid for the calculation
of iG, not for G.
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The last rule comes from the fact that the Green’s functions actually correspond to second
rank tensors in spin space and, in the simplest case of no external magnetic field and no
spin-spin interactions, have the form Gαβ(k , ω) = δαβG(k , ω). When evaluating the dia-
gram obviously a sum over the spin indices has to be carried out. And in Fermion loops,
combinations like δααG or δβγGδγβG yield a factor of 2S+1 when the spin sum is performed.

D.6.6 The bare phonon Green’s function

We close this section by calculating explicitly the bare phonon Green’s function defined
in (D.30). The phonon operators Aq are given by Aq = aq + a+

−q (when suppressing the
branch index λ). When evaluating the product Aq (t1)A−q (t2) we first restrict to the case
t1 > t2 to circumvent the difficulty presented by the time-ordering operator. The other
case works similarly and has to be taken into account when formulating the result of the
calculation given here. The evaluation of the product above consisting of two A-operators,
yields four combinations of two a-operators each. The expectation value of the combinations
consisting of creation or destruction operators only vanishes, and the terms left contain the
combinations a+

−qa−q and aqa
+
q . The state |0〉 here corresponds to the vacuum state of

the phonon field, and therefore contains no phonon at all. Hence, the expectation value of
a+
−qa−q also vanishes. The time dependence of the remaining term is given by aq (t1)a

+
q (t2) =

exp−iωq (t1 − t2) × aqa
+
q and recalling the quantum theory of the harmonic oscillator then

leaves us with the result

D(0)(q , t1 − t2) = −i〈0|T{Aq(t1)A−q(t2)}|0〉

= −i×
{
e−iωq (t1−t2) for t1 > t2
eiωq (t1−t2) for t1 < t2

(D.35)

where the case t1 < t2 was taken into account already. The Fourier transformation of the
bare phonon Green’s function gives

D(0)(q , ω) =
1

ω − ωq + iδ
− 1

ω + ωq − iδ

=
2ωq

ω2 − ω2
q + iδ

(D.36)

which has two poles, one at the frequency ω = ωq , slightly shifted to the lower frequency
plane, and the second at ω = −ωq , slightly shifted to the upper frequency plane.

D.7 Self-energy contributions and the

Dyson equation

In the last section, we have come to the conclusion that the contribution to the Green’s
function in nth order of the perturbation V in (D.27) is given by all topologically different
and connected Feynman diagrams containing n/2 phonon lines. For most of the applications
of Green’s function theory it is still not sufficient to approximate the Green’s function by its
bare counterpart plus the terms given by perturbation theory up to, say, order N . Instead,
important contributions to the Green’s function have to be included to all orders.
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It is important to stress that only the certain terms have to be included to infinite order.
Taking all diagrams to all orders would be an insurmountable task. But the inclusion of
certain important contributions9 to all orders is relatively easy to manage by applying the
Dyson equation.

Let us look at a simple example. The diagrams contributing to the electronic Green’s
function in 4th order of the electron-phonon matrix element are show in Fig. D.6.

(a)

(b)

(c)

(d)

Figure D.6: Feynman diagrams for the renormalization of the electron Green’s function by
phonons in fourth order of the electron-phonon coupling matrix element.

We focus on the diagram of Fig. D.6(a). It is simply twice the diagram in Fig. D.5. In
sixth order perturbation theory it will occur again, then being three times the diagram in
Fig. D.5. Considering this class of diagrams up to infinite order is equivalent to summing a
geometrical series and can be performed easily, provided it converges.

The diagram in Fig. D.5 translates according to the Feynman rules into the expression

iG(0)(k , ω)Σ1(k , ω)G(0)(k , ω)

with Σ1(k , ω) = −
∑

q

|Mq |2
∫

dω

2π
D(0)(q , ν)G(0)(k − q , ω − ν) .

9Which contributions are important is shown by “experience.”
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It is clear that the diagram in Fig. D.6(a) then is represented by the expression

iG(0)(k , ω)
[
Σ1(k , ω)G(0)(k , ω)

]m

for m = 2. For m = 2n > 2 it corresponds to an m-fold repetition of Fig. D.5. Summing up
the contributions for all m = 2n (n = 0 . . .∞) yields

G1(k , ω) = G(0)(k , ω) +
∑

m

G(0)(k , ω)
[
Σ1(k , ω)G(0)(k , ω)

]m

= G(0)(k , ω) +G(0)(k , ω)Σ1(k , ω)G1(k , ω) .

(D.37)

We have denoted by G1(k , ω) the Green’s function that results from summing all the dia-
grams consisting of a sequence of that in Fig. D.5. A graphical representation of (D.37) is
shown in Fig. D.7.

Clearly, the Green’s function G1 defined in the last paragraph is only an approximation
to the exact Green’s function G. But the method above can be extended to give the exact
Green’s function as well (at least in principle). This extension is based upon the observation
that the function Σ1(k , ω) can be replaced by a function Σ(k , ω), such that the function G1

becomes the exact Green’s function. The resulting Dyson equation is

G(k , ω) = G(0)(k , ω) +G(0)(k , ω)Σ(k , ω)G(k , ω) , (D.38)

where the self energy Σ(k , ω) is the sum of all irreducible self-energy parts Σi(k , ω). As
irreducible self-energy parts we designate diagrams which can be put between two electron
lines and cannot be separated into two nonconnected parts by just cutting one electron line.
Equation (D.38) generates the whole series of diagrams contributing to the Green’s function
by iteration and in this manner generates all different sequences of self-energy parts Σi to
form diagrams of higher order in the perturbation. The diagram in Fig. D.6(a) is generated
in the second iteration of the Dyson equation as

G(0)(k , ω)Σ1(k , ω)G(0)(k , ω)Σ1(k , ω)G(0)(k , ω)

and if the diagram related to the expression Σ1(k , ω)G(0)(k , ω)Σ1(k , ω) would be included as
a self-energy part Σ2 in the self energy, the diagram in Fig. D.6(a) also would be generated
in the first iteration of the Dyson equation as G(0)(k , ω)Σ2(k , ω)G(0)(k , ω) and would be
incorrectly counted twice.

The recipe usually employed to calculate the Green function is to calculate the self energy
first, and then replace it into Dyson’s equation. It is clear, however, that the self energy
cannot be calculated exactly, because it consists of an infinite number of very different
diagrams. But at this point, a rather systematic way of approximating the Green’s function
can be given: the one to approximate the self energy. This procedure is illustrated in
Fig. D.7: the self energy is approximated by one self-energy part, which for some reason is
considered to be the most important one, and is being used in conjunction with the Dyson
equation the calculate an approximation of the Green’s function.

Let us look again at the bare Green’s function

G(0)(k , ω) =
1

ω − ξk + iδk
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Σ

= +

+
+ ...

= +

=

Figure D.7: Self energy and Dyson equation.

which is closely related to the excitation spectrum of the noninteracting system because it
has poles at the unperturbed excitation energies. This property is shared by the full Green’s
function with respect to the interacting system:

G(k , ω) =
1

ω − ξk − Σ(k , ω) + iδk
. (D.39)

The excitation energies of the perturbed system as obtained from (D.39) are

ω − ξk − Σ(k , ω) = 0

or ω = ξk + Re Σ(k , ω) + i Im Σ(k , ω) .
(D.40)

Note that due to the dependence of the self energy on the frequency, (D.40) is in general
non-linear.

D.7.1 The self-energy of a phonon

The formalism presented so far is also applicable to calculating the phonon Green’s func-
tion D(q , ν) in a perturbational approach from the bare phonon Green’s function D(0)(q , ν).
The following Dyson equation defines the phonon self-energy Π(q , ν):

D(q , ν) = D(0)(q , ν) +D(0)(q , ν)Π(q , ν)D(q , ν) . (D.41)

As in the case of the electron self-energy, the phonon self-energy is given by all diagrams,
which can be inserted between two phonon lines representing D(0)(q , ν), but cannot be
separated into independent parts by just cutting one phonon line.

An important contribution to the phonon self-energy is the decay of the phonon into an
electron-hole pair with a subsequent recombination of the electron-hole pair and creation
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k,ω

k+q, ω+ν

q,ν

Figure D.8: A irreducible contribution to the phonon self-energy.

of a phonon. This process is depicted in Fig. D.8, and, using the Feynman rules, can be
translated into the expression

Π(q , ν) = −2i|Mq |2
∫

d3k dω

(2π)4
G(0)(k + q , ν + ω)G(0)(k , ω) .

As we will see later, this expression is very similar to the one for the longitudinal dielectric
function.

We now evaluate the frequency integral in the expression above for a degenerate electron
gas

∫
dω

2π
G(0)(k + q , ν + ω)G(0)(k , ω)

=

∫
dω

2π

1

ω + ν − ξk+q + iδk+q

1

ω + ν − ξk + iδk
.

We encounter four cases. The first is the case with ξk+q above the Fermi surface and ξk
below the Fermi surface, that is, the former corresponds to an electron and the latter to
a hole. We close the integration contour in the upper frequency half plane and take the
residue of the pole at ω = ξk + iδ. The integral

∫
dω equals to 2πi times the sum over all

residues,

∫
dω

2π

1

ω + ν − ξk+q + iδk+q

1

ω + ν − ξk + iδk
=

i

ν − (ξk+q − ξk ) + iδ
.

The second case deals with ξk+q below the Fermi surface and ξk above the Fermi surface and
results in the complex conjugate of the expression above. In the last two cases, either both
poles are in the upper half plane or both are in the lower half plane. The contour can be
closed in the half plane which does not contain a pole and the integral vanishes. Therefore,
there are only contributions to the phonon self-energy from an electron and a hole, not from
two electrons or two holes.

Adding all the contributions, from the different cases above, the resulting phonon self-
energy becomes

Π(q , ν) = 2|Mq |2
∫

d3k

(2π)3

[
1

ν − (ξk+q − ξk) + iδ
+ c.c.

]

.
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This expression has poles at the energies ξk+q − ξk which are the excitation energies for pair
excitations in which an electron from the state k is excited to the state k + q . Another
very important property of the equation above is that its real part is even in frequency ν
and its imaginary part is odd in frequency. This is a general rule for Green’s functions and
self-energies describing bosonic excitations. The excitation of fermion-pairs shares these
properties.

D.8 Analytic properties of Green’s function

In this section, we will take a closer look to the analytic properties of Green’s functions and
define retarded Green’s functions.

The analytic properties of the Green’s function are of central importance for the in-
terpretation of many-particle effects. We will investigate these properties for the Green’s
function G(k , ω) in frequency space. We recall that G(k , t) is defined only for real times
although the Fourier transform defines G(k , ω) in the whole complex frequency plane.

D.8.1 The spectral functions

The analytic properties of G(k , ω) are brought clearly to light by introducing the Lehmann
representation. We start with the definition of the Green’s function (D.9) (the state |GS〉 is
the exact ground state of the system an we denote by N its particle number) and treat the
case t > t′. By inserting the complete sum

∑

n |n〉〈n| = 1 of eigenstates of H between the
c-operators and using E0 and En to denote the eigenenergies of the exact ground state |GS〉
and the states |n〉, respectively, the expression

G(k , t− t′) = −i
∑

n

∣
∣〈n|c+k |GS〉

∣
∣2e−i(En−E0)(t−t′)

can be derived. The states 〈n| must contain N + 1 particles. Therefore, the energy En is
the energy of an eigenstate of the (N + 1)-particle system. If we denote by ωn the energy
difference between En and the ground state energy E0 of the (N+1)-particle system, and take
into consideration that the difference of the ground state energies for the (N+1)-particle and
the N -particle systems, respectively, equals the chemical potential µ, the relation En−E0 =
ωn + µ holds. We consider the case for t < t′ and obtain an expression similar to the one
above. Performing a Fourier transformation then yields the expression

G(k , ω) = − i
∑

n

∣
∣〈n|c+k |GS〉

∣
∣2

i

ω − ωn − µ+ iδ

+ i
∑

n

∣
∣〈GS|c+k |n〉

∣
∣
2 −i
ω + ωn − µ− iδ

.

We further simplify this expression by introducing the spectral functions

A(k , ω′) =
∑

n

∣
∣〈n|c+k |GS〉

∣
∣2δ(ω′ − ωn)

B(k , ω′) =
∑

n

∣
∣〈GS|c+k |n〉

∣
∣2δ(ω′ − ωn)
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which vanish for negative frequencies ω′, because ωn is non-negative. These functions have a
useful physical interpretation. The expression A(k , ω) dω ′ [B(k , ω) dω′] gives the probability
that an electron [hole] with momentum k has an energy (measured from the Fermi energy)
in the interval from ω′ to ω′ + dω′. Consequently, the sum rule

∫ ∞

0

A(k , ω′) dω′ = 1 − nk

[∫ ∞

0

B(k , ω′) dω′ = nk

]

expresses the fact that the electron [hole] with quasimomentum k has a positive energy (we
use nk = Θ(|k | − kF )). Note also the sum rule

∫
(A+B) dω′ = 1.

Using the spectral functions, the Green’s function can be written in the form

G(k , ω) =

∫ ∞

0

dω′
[

A(k , ω′)

ω − ω′ − µ+ iδ
+

B(k , ω′)

ω + ω′ − µ− iδ

]

called the Lehmann representation. Taking the real and imaginary part, respectively, of this
equation, it is easy to prove the relations

ImG(k , ω) =

{
−πA(k , ω − µ) for ω > µ
πB(k , µ− ω) for ω < µ

ReG(k , ω) =
1

π

∫ ∞

−∞

ImG(k , ω′) sign(ω′ − µ)

ω′ − ω
dω′

connecting the imaginary part of the Green’s function G(k , ω) to the spectral func-
tions A(k , ω) and B(k , ω), and relating the imaginary part of the Green’s function to its
real part by an equation similar to a Kramers-Kronig relation.

For a degenerate (noninteracting) electron gas, the spectral functions become δ-functions,
that is

A(k , ω) = (1 − nk )δ(ω − εk ) A(k , ω) = nkδ(ω − εk ) .

Putting this into the Lehmann representation of the Green’s function, Eq. (D.20) is easily
recovered.

D.8.2 The retarded Green’s functions

When calculating measurable quantities, as for instance the density of states, or the con-
ductivity, or lifetime broadenings, it is convenient to utilize the retarded Green’s functions.
On the other hand, the retarded Green’s function cannot be calculated directly, there is no
diagrammatic expansion for retarded Green’s functions. But the retarded Green’s function
is related in a simple way to the time-ordered Green’s function used so far. Hence, the usual
approach in calculating measurable quantities is to first determine the time-ordered Green’s
function by diagram techniques. Then the relation given below is used to find the retarded
Green’s function. The retarded Green’s function GR(k , t − t′) is defined in the Heisenberg
representation by

GR(k , t− t′) = −iΘ(t− t′)〈GS|[cH,k (t), c
+
H,k(t

′)]|GS〉 (D.42)
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with the commutator [A,B]. Because of the theta function Θ(t−t′) the ω-t Fouriertransform
of (D.42) only has poles in the lower half frequency plane. It is now easy to see that the
relation between the time-ordered and the retarded Green’s function is

ImGR(k , ω) = ImG(k , ω) · sign(ω − µ)

ReGR(k , ω) = ReG(k , ω)

Due to the fact that the retarded Green’s function is analytical in the upper frequency half
plane, the following Kramers-Kronig relations hold:

ReGR(k , ω) =
1

π

∫ ∞

−∞

ImGR(k , ω′)

ω′ − ω

ImGR(k , ω) = − 1

π

∫ ∞

−∞

ReGR(k , ω′)

ω′ − ω
.

(D.43)
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Appendix E

BCS-theory and the gap function

E.1 Introduction

This short appendix has two purposes. First it gives a short review of the one-band BCS-
theory and defines some terms used in the main part of the thesis. Second it discusses the
implications of crystal symmetry on the form of the gap function and tries to classify the
possible gap functions in tetragonal high-Tc superconductors using the formalism of point
group representations.

E.2 One-band BCS-theory

The first successful microscopic theory for the description of superconductors was given
by Bardeen, Cooper, and Schrieffer in their pioneering paper Theory of Superconductivity
which appeared December, 1st, 1957 [E.1]. This is the theory still used for the so-called
weak-coupling conventional superconductors1 and is also used often as a starting point for
a theoretical model for high-Tc superconductors.

The BCS-theory starts with a system of independent electrons described by the Hamil-
tonian

H0 =
∑

kσ

ξkσc
+
kσckσ ,

where ξk = εk −µ represents the dispersion relation (measured with respect to the chemical
potential) of the normal electron. A two-particle interaction2 Vk1σ1,k2σ2;k3σ3,k4σ4

is then added.
It has the following properties:

1Strong-coupling conventional superconductors are described by the Eliashberg-theory [E.2]. For the
unconventional superconductors, of which the high-Tc compounds are part, there is not yet a satisfactory
theory.

2This interaction is caused by the exchange of a virtual phonon between two electrons (in other words,
a moving electron polarizes the lattice of ions, and the polarized lattice then influences a second electron).
The typical energy scale for which the interaction is attractive extends from zero to the Debye frequency.
This attractive interaction is very small, and therefore it is surprising that it can form bound pairs. Usually
when trying to bind an electron in a shallow potential in 3 dimensions, a certain strength of the potential is
needed such that the electron can be bound. This minimum potential can be estimated by the Sommerfeld
quantization condition. The fact that bound states can be formed for an arbitrarily small attractive potential
was shown by Cooper [E.3] and is a very important feature of the BCS-theory.
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• Only two electrons with opposite quasimomentum k are allowed to interact through
exchange of phonons, that is, the conserved total quasimomentum K is zero (if no
external field is applied) in the scattering process. Umklapp processes are neglected.3

• The spin configuration of the scattering electrons is that of a singlet. The two electrons
have opposite spin.4

These properties allow us to write the interaction as

Vk1σ1,k2σ2;k3σ3,k4σ4
= V(kσ),−(kσ),(k ′σ′),−(k ′σ′) ≡ Vkσ;k ′σ′

(we use the convention −(kσ) = −k ,−σ) and finally to introduce the interaction Hamilto-
nian

Hint =
1

2

∑

kσ;k ′σ′

Vkσ;k ′σ′c+(k ′σ′)c
+
−(k ′σ′)c−(kσ)c(kσ) . (E.1)

Bardeen, Cooper, and Schrieffer [E.1] calculated the ground state of

HBCS = H0 +Hint

using an Ansatz for the ground state and then minimizing its energy by applying a varia-
tional technique (see also [E.4], Chap. 2-4). Using a mean field approximation (MFA) ([E.5],
Chap. 3.5) results in the same ground state energy and wave function, but is more trans-
parent, so we will follow the latter way.

The key observation in the mean field approximation is that the operator c−k↓ck↑ is
almost a c-number (with only small fluctuations) and therefore we write

c−k↓ck↑ = 〈c−k↓ck↑〉 + (c−k↓ck↑ − 〈c−k↓ck↑〉) ≡ 〈c−k↓ck↑〉 + Φk ,

the quantity Φk is small compared to 〈c−k↓ck↑〉 and can be treated as a perturbation. Us-
ing (E.1) we thus write, to first order in Φk ,

HBCS = HM +O(Φk )
2

HM =
∑

kσ

ξkσc
+
kσckσ −

∑

k

(∆kc
+
k↑c

+
−k↓ − ∆∗

kc−k↓ck↑)
(E.2)

3We are only considering pairs with total momentum K = 0, mainly because of two reasons. The
first involves phase space arguments: Scattering is possible for non-zero total momentum as well, but the
sharp drop of the occupation number at the Fermi surface, together with the observation that the energy
transferred in the scattering process is smaller than the Debye frequency ωD and therefore the change of the
magnitude of the quasimomentum of the electron (≈ ωD/vF ) in the scattering process is small, therefore
electrons involved in the scattering process stay in regions very closed to the Fermi surface. This implies
that the phase space for scattering processes with vanishing total momentum is much larger than for other
situations. In a time-dependent formulation, one finds that the pairs with K = 0 have the largest ‘growth
rate’ (see [E.4], Chap. 7). This is the same result stated with different words. A second reason for only
taking into account pairs with K = 0 is the fact that the pair energy increases linearly with K (see [E.4],
(2-15)) such that the state with K = 0 has the lowest energy of all pair states.

4The total wave function of an electron pair is a product of the spin function and the orbital wave
function and has to be antisymmetric with respect to the exchange of the electrons. The singlet spin
function is antisymmetric, therefore the related orbital wave function is symmetric and favors the situation
where the “paired” electrons are closed to each other. The triplet spin function, however, is symmetric,
therefore the orbital wave function must be antisymmetric and as a consequence the electrons are pushed
away from each other. For an attractive interaction which decreases in strength with the electron distance,
the singlet state will be of lower energy than the triplet state.
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where the definition of the gap function

∆k = −
∑

k ′

Vkk ′〈c−k ′↓ck↑〉 (E.3)

has been used. The Hamiltonian (E.2) is bilinear in the c-operators and can be diagonalized
by means of a canonical transformation. So far, the gap function ∆k remains unknown.
The gap equation (E.3), however, provides a relation between the c-operators and the gap
function. Therefore, the diagonalization of the Hamiltonian and the solution of the gap
equation must be performed self-consistently. In practice this is done by first diagonalizing
the Hamiltonian while treating the gap function as a freely adjustable. Then the average
〈c−k↓ck↑〉 can be evaluated and the gap function is given by the gap equation.

The Ansatz for the canonical transformation—which is called the Bogoliubov-Valatin
transformation—is (see [E.5], Eq. (3.42))

ck↑ = u∗kγk0 + vkγ
+
k1

c+−k↓ = −v+
k γk0 + ukγ

+
k1 .

(E.4)

The operator γk0 possesses a certain probability amplitude for destroying an electron with
quantum numbers (k ↑) and for creating one with quantum numbers (−k ↓). It removes
a quasimomentum k from the system and lowers the quantum number mz related to the
component of the angular momentum in direction of the quantization axis by 1/2. The
operator γ+

k1 performs a similar change: It adds the quasimomentum k to the system and
increases mz by 1/2. These amplitudes are given by the coherence factors uk and vk which
are determined by demanding that the γ-operators obey the standard anticommutation
relations for fermions and that the transformation (E.4) diagonalizes the Hamiltonian HM

in (E.2). The diagonalized Hamiltonian becomes

HM =
∑

k

Ek (γ
+
k0γk0 + γ+

k1γk1 + const.) (E.5)

and introduces quasiparticles called bogolons which possess the energy Ek above or below
the “ground state” with the dispersion relation

Ek = ±
√

ξ2
k + |∆k |2 . (E.6)

The coherence factors which have to be used in the Bogoliubov-Valatin transformation are

|vk |2 = 1 − |uk |2 =
1

2

(

1 − ξk
Ek

)

. (E.7)

Note that the diagonalization becomes a simple eigenvalue problem in this formulation.
Our main goal of determining the energy spectrum of HBCS is almost reached. Just the

calculation of the gap function is left. We perform this by using the canonical transformation
to express the average 〈c−k↓ck↑〉 by means of the γ-operators. The result is

〈c−k↓ck↑〉 = u∗kvk 〈1 − γ+
k0γk0 − γ+

k1γk1〉 = u∗kvk (1 − 2f(Ek )) ,
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the second equation arises from the observation that the γ-operators γk0 and γk1 annihilate
the ground state. The function f(E) is the Fermi-function and β = 1/(kBT ). Using the
expression (E.7) for the coherence factors, the gap equation becomes

∆k = −
∑

k ′

Vkk ′

∆k ′

2Ek ′

tanh
βEk ′

2
. (E.8)

In this form, the gap equation (E.8) determines the gap function ∆k for a given interac-
tion Vkk ′ , a given dispersion relation ξk , and for a given temperature T = 1/(kBβ). Note
that (E.8) is not a homogeneous equation in the gap function, because ∆k appears also
in the dispersion relation Ek , and consequently, Eq. (E.8) is not an eigenvalue equation.
Solving (E.8) is a non-trivial task. In the BCS formulation the simplification Vkk ′ = −V0,
independent of k and k ′, makes the analytic solution of the gap equation possible.

E.3 Symmetries of the gap function

We can draw some general properties [E.6, E.7, E.8] of the gap function ∆k from the Hamil-
tonian HM in (E.2), the dispersion relation (E.6) and the gap equation (E.8).

We focus once again on the interaction, this time taking closer attention to the spin.
The interaction

Vσ1σ2σ3σ4
(k , k ′) ≡ V−kσ1 ,kσ2;−k ′σ3,k ′σ4

≡ 〈−kσ1, kσ2|V̂ | − k ′σ3, k
′σ4〉 (E.9)

has the property (refer to [E.7], Sect. IIA)

Vσ1σ2σ3σ4
(k ,−k ′) = +Vσ2σ1σ4σ3

(−k , k ′) (E.10)

which becomes clear from the operator product c+−kσ1
c+kσ2

c−k ′σ3
ck ′σ4

. The definition (E.3) of
the gap function reads (see [E.7])

∆σσ′(k) = −
∑

k ′,σ3,σ4

Vσ′σσ3σ4
(k , k ′)〈ck ′σ3

c−k ′σ4
〉 (E.11)

and implies

∆σσ′(k) = −∆σ′σ(−k) (E.12)

when taking into account (E.10).
We assume now that the interaction V vanishes for spin flip processes. Furthermore we

restrict to singlet pairing. Then, 〈ckσc−kσ′〉 ∼ δσ,−σ′ , and the gap function (E.11) becomes
proportional to δσ,−σ′ . Equation (E.12) is fulfilled in this case by

(∆σσ′(k)) =

(
0 ∆k

−∆k 0

)

; ∆k = ∆−k , (E.13)

where the complex scalar function ∆k corresponds to the gap function used in Eqs. (E.3)
and (E.8) and must be an even function of k .
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The gap function is determined by the gap equation (E.8). Close to the critical temper-
ature Tc ≡ 1/(kBβc), the gap function becomes very small, and Ek ≈ ξk linearizes (E.8). In
the weak-coupling limit, the k ′-sum of the linearized gap equation

∆k = −
∑

k ′

Vkk ′∆k ′ · 1

2ξk ′

tanh
βcξk ′

2

is written as a product of two sums (we denote the interaction (E.9) for the singlet case
by Vkk ′ , it corresponds to the interaction in (E.8)),

∆k = −
∑

k ′

Vkk ′∆k ′ ·
∑

k ′′

1

2ξk ′′

tanh
βcξk ′′

2
, (E.14)

this is possible if Vkk ′ depends only weakly on k and k ′ (see [E.7], Eq. (2.18)). The second
sum in (E.14) can be evaluated and yields

−
∑

k ′

Vkk ′∆k ′ = v∆k (E.15)

with v−1 = ln(1.14βcεc), where εc is an energy cutoff, which is of the order of the Debye
energy. Eq. (E.15) has the following properties:

• It is an eigenvalue equation for the determination of the gap function ∆k .

• The eigenvalues v correspond to a critical temperature Tc.

• Because of Vkk ′ < 0, all eigenvalues are positive.

• The larger the eigenvalue v, the larger the corresponding critical temperature Tc.

The largest of the eigenvalues of (E.15) therefore gives the Tc at which the system becomes
superconducting. The corresponding eigenfunction ∆k is the gap function.

The fact that the dispersion relation (E.6) is invariant with respect to the symmetry
transformations G of the point symmetry group G of the crystal requires

|∆k | = |∆Gk | . (E.16)

The symbol Gk denotes the application of the transformation G to k .
The gap function ∆k can be decomposed into parts ∆µ

k transforming according to irre-
ducible representation (IRs)5 µ of the group G. The decomposition is given by

∆k =
∑

µ

∆µ
k ,

∆µ
k =

1

nG

∑

G∈G
χµ(G)∆Gk

(E.17)

5In the literature, irreducible representations are called reps. We call them IRs and use the term reps to
denote representations which may be reducible.
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IR name Alternative name Eigenfunction
A1g s+, s 1
A2g s− xy(x2 − y2)
B1g d+, dx2−y2 x2 − y2

B2g d−, dxy xy
Eg e z(x ± iy)

Table E.1: Even-parity irreducible representations (IRs) of the tetragonal D4h point group.

where χµ(G) is the character of the group element G in the representation µ, and nG is the
order of the group G (refer to App. C on group theory). We will assume that there is no
accidental degeneracy, the largest Tc of (E.15) corresponds to exactly one gap function ∆k .

Now we ask for the IR which can occur in the decomposition (E.17) such that the gap
function is consistent with the conditions (E.13) and (E.16). From (E.13) it is obvious that
only even-parity IRs are allowed.

We specialize now to the tetragonal D4h group to give more concrete results. This group
possesses five even-parity IRs, four out of these are one-dimensional (1D) IRs and the fifth
is a two-dimensional (2D) IR (see Tab. E.1).

It is clear that the gap function ∆k may be composed out of exactly one of the four 1D
IRs.

Due to the fact that the gap function is a complex function, 2D representations (reps)
are also possible candidates. Indeed, a gap function transforming according to the E1g IR
fulfills condition (E.16) perfectly.

We call the 5 IRs discussed so far the pure phases [E.6], they are

∆k = ∆s+

k , ∆k = ∆s−

k , ∆k = ∆d+

k , ∆k = ∆d−

k , and ∆k = ∆e
k . (E.18)

For the notation of the IRs µ, refer to Tab. E.1.
The reducible 2D reps are the next choice: the real part may transfer according to one

1D IR, and the imaginary part according to another. The four 1D IRs allow for the six
mixed phases [E.6]

∆s+

k + i∆s−

k , ∆s+

k + i∆d+

k , ∆s+

k + i∆d−

k , ∆d+

k + i∆d−

k ,

∆s−

k + i∆d+

k , and ∆s−

k + i∆d−

k

(E.19)

in this way.
The lists (E.18) and (E.19) exhausts the possible forms of the gap functions. Pure real

mixtures of different reps, as for instance ∆s+

k + ∆d+

k are not allowed in the D4h group.
They, however, become possible when the symmetry is lowered to, for instance, the one

of the orthorhombic D2h group. The tetragonal IRs A1g and B1g then degenerate into the
Ag (D2h) IR and therefore ∆s+

k + ∆d+

k is allowed.
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