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Abstract
This publication presents the most important elements of group

theory as seen from a solid state physicist’s perspective. Examples
are taken mostly from crystallography. Classification of phonons in
crystals is discussed and applied to Raman scattering.
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1 Motivation. The “why?” of group theory

In solid state physics there are a lot of complicated measurable quantities
(observables) which depend crucially on the symmetry of the crystal under
investigation. The 3×3 dielectric tensor εij provides examples of such quan-
tities. It is a symmetrical tensor and therefore consists of 6 complex indepen-
dent components. Symmetries of the crystal further reduce the number of
independent quantities in the dielectric tensor. To figure out the exact num-
ber of independent components in case of crystals with complicated structure
is by no means a simple task.

Another interesting quantity is the 4th rank tensor cµνρσ representing the
elastic constants. In triclinic systems this tensor has 21 independent real
components which are reduced to only 3 in cubic materials. Group theory1

provides the means to investigate these questions systematically.
Group theory is also used to classify and characterize the various crystal

structure and plays a very important role in the classification of electronic and
vibrational states in crystals. In doing so it detects and explains symmetry-
caused degeneracies of states. Last but not least, group theory is used to
eludicate selections rules for light absorption and Raman scattering among
other things.

2 Definition of a group. Basic properties

Groups. A group G is a set of elements G = {G1, . . . , Gg} together with a
mapping ◦:G × G → G called group multiplication. The latter satisfies the
following group axioms:

(A) Associativity: For all A,B,C ∈ G:

A ◦ (B ◦ C) = (A ◦B) ◦ C

(N) Existence of a neutral element (also unit element or identity element):
There is an element E ∈ G such that for each G ∈ G:

E ◦G = G ◦ E = G

1Introductions to group theory are given in [1, 2, 3, 4, 5].
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(I) Existence of an inverse element: For each G ∈ G there is an element
G−1 ∈ G such that

G ◦G−1 = G−1 ◦G = E

If in addition to these three axioms2 also the commutativity holds, then the
group is called a commutative or Abelian group:

(C) Commutativity: For all A,B ∈ G:

A ◦B = B ◦A

If a group has a finite number of elements it is called a finite group, otherwise
it is an infinite group. The number of elements g of a finite group G is called
the order of the group.

Example: C3v. A very instructive example of a group is the group of
symmetry operations of an equilateral triangle (see Fig. 1). These symmetry
operations are rotations by 0◦, 120◦, and 240◦ (denoted by E, C3 and C−1

3 ,
latter is the inverse element of C3) with rotation axis perpendicular to the
triangle through its center C. The reflections at planes perpendicular to the
triangle and passing through an edge and the center of the side opposite
to it are also symmetry operations, we denote these by σ1, σ2, and σ3 (see
Fig. 1). These symmetry operations of the triangle form the group C3v =
{E,C3, C

−1
3 , σ1, σ2, σ3}, the multiplication is defined by means of successive

application of the symmetry operations; it is tabulated in the multiplication
table of the group C3v in Tab. 1.

The multiplication table maps each pair of group elements to another
group element and therefore represents the mapping ◦:G × G → G. Associa-
tivity holds. The group element E is the unit element and the fact that E
appears exactly once in every column and row of the multiplication table
shows that every element of the group has one and only one inverse element.
Furthermore note that σ1σ2 = C3, but σ2σ1 = C−1

3 , that is, the group is not
commutative (not Abelian).

Subgroups. By inspecting the multiplication table, it can be seen that
the subset

C3 = {E,C3, C
−1
3 }

2Actually, in (N) only E◦G = G is an axiom. The property G◦E = G is a consequence
of this is the other axioms. This is similar for (I). See [1].
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C3v E C3 C
−1
3 σ1 σ2 σ3

E E C3 C
−1
3 σ1 σ2 σ3

C3 C3 C
−1
3 E σ3 σ1 σ2

C
−1
3 C

−1
3 E C3 σ2 σ3 σ1

σ1 σ1 σ2 σ3 E C3 C
−1
3

σ2 σ2 σ3 σ1 C
−1
3 E C3

σ3 σ3 σ1 σ2 C3 C
−1
3 E

Table 1: Multiplication table of the group C3v. The table entries are a ◦ b,
where a is given in the first row, and b is given in the first column of the
table.

σ2σ3

σ1

C

Figure 1: Mirror planes of an equilateral triangle.
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of the group C3v is a group of its own. (Note that the group itself and one
of its elements both are denoted by the symbol C3 in the literature. Usually
it is clear from the context, whether the group or the symmetry operation
is meant. To remove any ambiguity we denote the groups using boldface
letters). A subset H of a group G which is also a group with respect to the
multiplication in G is called a subgroup of G. The subsets {E} containing just
the unit element of G, and the “subset” G consisting of the full group G are
the trivial subgroups of G, all other subgroups are called proper subgroups.
The group C3 has an interesting property. By applying C3 repeatedly, all the
group elements of C3 can be generated: C3 ◦C3 = C−1

3 and C3 ◦C3 ◦C3 = E
(Tab. 2, left panel). Therefore, C3 is called a cyclic group and the symmetry
operation C3 its generating element. Obviously, cyclic groups are always
commutative (Abelian).

Isomorphism. Consider now the set C3 consisting of the three third
roots of one, 1, α ≡ exp( 2π

3
i), and α2 ≡ exp(4π

3
i) with the complex multi-

plication as mapping (Tab. 2, right panel). This set forms a group. It is
cyclic and of order 3 just as the group C3. Furthermore its multiplication
table shows exactly the same structure as that of the C3 group (Table 2).
The groups C3 and C3 are therefore called isomorphic groups. If a mapping
f :G → G ′ exists between two groups G and G ′ that maps the elements G ∈ G
to the elements G′ ∈ G ′, that is, G′ = f(G), and has the property

f(GiGj) = f(Gi)f(Gj)

for arbitrary elements Gi, Gj ∈ G, then the mapping f is called a homo-
morphism and the groups G and G ′ are called homomorphic, G ∼ G ′. The
mapping f : C3 → C3 given by f(E) = 1, f(C3) = α, and f(C−1

3 ) = α2 has
these properties but, in addition, the mapping is a one-to-one correspondence
between the elements of the groups G and G ′. This is why such mapping is
usually called an isomorphism and the groups are called isomorphic. Iso-
morphic groups can be considered equal, mathematically they have the same
structure.

The definitions introduced so far are sufficient for an understanding of
most of the theory of representations of point groups. In order to discuss
the symmetry properties of space groups we need to introduce the following
additional definitions and properties of groups.

Cosets. Let us come back to the C3v group. The subset H = {E, σ1}
of C3v is a subgroup of C3v , called Cs. We can construct other subsets of



c© 1999, Thomas Strohm, www.thomas-strohm.de 6

C3 E C3 C
−1
3

E E C3 C
−1
3

C3 C3 C
−1
3 E

C
−1
3 C

−1
3 E C3

C3 1 α α2

1 1 α α2

α α α2 1
α2 α2 1 α

Table 2: Multiplication tables of the groups C3 and C3.

C3v, the so-called right cosets by multiplying all elements of the subgroup H
of G with a fixed element G ∈ G on the right,

HG ≡ {HG | H ∈ H} .

The element G ∈ G is called the coset representative of the coset H.
The right cosets of C3v are Hσ2 = {σ2, C3} and Hσ3 = {σ3, C

−1
3 } (note

that HC3 = {C3σ2} = Hσ2 etc.). The conjunction of the elements of the
three cosets H, Hσ2, and Hσ3 together contains all the elements of the
group C3v . The relation

C3v = H +Hσ2 +Hσ3 , H = {E, σ1}

is called the decomposition of C3v into right cosets with respect to the sub-
group H. Another right coset decomposition of C3v is the one with respect
to the subgroup C3, given by

C3v = C3 + C3σ1 , C3 = {E,C3, C
−1
3 } .

The definition of left cosets and the decomposition into left cosets is analogous
to the one given above for right cosets. Note that two cosets HA and HB for
A,B ∈ G are either identical or do not contain any common elements (they
are disjunct sets).

Let g and h denote the order of the group G and its subgroup H, re-
spectively, and l the number of cosets in the coset decomposition of G with
respect to H, called the index of H in G. Then the relation g = hl holds. An
interesting consequence of this relationship is that a group with prime order
does not have proper subgroups.

Conjugate classes. For the theory of representations of a group, the
central part of this chapter, the notion of the conjugate classes is important.
We define a relation on the group G. Two elements A and B of G are called
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conjugate, if there exists an element G of G such that B = GAG−1. We
represent conjugation of two elements as A ∼ B, explicitly

A ∼ B if and only if there is a G ∈ G such that A = GBG−1 . (1)

The properties of the conjugation are the reflectivity (r) which states that
A ∼ A, then the symmetry (s) implying A ∼ B if B ∼ A, and the transitivity
(t) which expresses the fact that if A ∼ B and B ∼ C (C ∈ G), then A ∼ C
holds. These are the axioms of a relation. Relations decompose sets into
disjunct subsets called classes. The decomposition of sets into classes is
called classification of the set with respect to the given relation. The group
C3v decomposes into the three classes

C1 = {E} , C2 = {C3, C
−1
3 } , and C3 = {σ1, σ2, σ3}

containing the unit element, the rotations, and the reflections, respectively.
The coset decomposition and the classification of groups are two methods

to decompose groups into disjunct subsets the composition of which covers
the whole group.

Now we construct the sets

GHG−1 = {GHG−1:H ∈ H}

for a fixed element G ∈ G. These sets turn out to be subgroups of G, and
are called conjugate subgroups of H. The conjugate subgroups of the trivial
subgroup {E} as well as the proper subgroup Cs = {E, σ1}, and C3 =
{E,C3, C

−1
3 } of C3v with respect to a element G ∈ G are given in Tab. 3. The

conjugate subgroups of the trivial subgroup {E} and C3 are the subgroups
themself. This leads to the definition of the invariant subgroups.

Invariant subgroups. If all the conjugate elements to each element of
the subgroup H of G are contained in H, that is, if GHG−1 ∈ H is fulfilled
for all G ∈ G, we call H an invariant subgroup of G, also normal divisor
(“Normalteiler” in German) or normal subgroup. In this case, H is composed
out of classes of G. The invariant subgroups of C3v are the trivial ones, {E}
and G, as well as the proper subgroup C3 = C1 ∪ C2 (see Tab. 3). Note that
GHG−1 ∈ H implies GHG−1 = H which also can be written in the form
GH = HG and expresses the fact that for invariant subgroups H left and
right cosets are identical and therefore the left and right coset decompositions
are equivalent.
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GHG−1 H = {E} H = {E, σ1} H = {E,C3, C
−1
3 }

E {E} {E, σ1} {E,C3, C
−1
3 }

C3 {E} {E, σ2} {E,C3, C
−1
3 }

C
−1
3 {E} {E, σ3} {E,C3, C

−1
3 }

σ1 {E} {E, σ1} {E,C3, C
−1
3 }

σ2 {E} {E, σ3} {E,C3, C
−1
3 }

σ3 {E} {E, σ2} {E,C3, C
−1
3 }

Table 3: Conjugate classes of some subgroups of C3v .

Using the notation of invariant subgroups, we can define new groups, the
factor groups. Consider a group G of order g and an invariant subgroup N
of G of order n. The coset decomposition is

G = NE +NG2 + · · ·+NGl , Gi ∈ G

with l = g/n. For two cosets NA and NB with A,B ∈ G a multiplication
can be defined by3

NA · NB ≡ {NANB:M,N ∈ N} .

It can easily be seen that this set is the coset represented by AB, that is,

NA · NB = N (AB)

and, consequently, the product of two cosets is also a coset. The cosets of
a coset decomposition with respect to an invariant subgroup form a group
under the multiplication defined above. This group is called the factor group
(or quotient group) of G with respect to the invariant subgroup N , denoted
by G/N . (This notation motivates the name normal divisor for an invariant
subgroup).

As an example we mention the coset decomposition of the group C3v with
respect to its invariant subgroup C3,

C3v = C3 + C3σ1

3repeated elements in {NANB:M,N ∈ N} are considered to be removed.
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C3v/C3 C3 C3σ1

C3 C3 C3σ1

C3σ1 C3σ1 C3

Table 4: Multiplication table of the factor group C3v/C3.

D4 E C4 C2 C
−1
4 C2x C2y C2x′ C2y′

E E C4 C2 C
−1
4 C2x C2y C2x′ C2y′

C4 C4 C2 C
−1
4 E C2x′ C2y′ C2y C2x

C2 C2 C
−1
4 E C4 C2y C2x C2y′ C2x′

C
−1
4 C

−1
4 E C4 C2 C2y′ C2x′ C2x C2y

C2x C2x C2y′ C2y C2x′ E C2 C
−1
4 C4

C2y C2y C2x′ C2x C2y′ C2 E C4 C
−1
4

C2x′ C2x′ C2x C2y′ C2y C4 C
−1
4 E C2

C2y′ C2y′ C2y C2x′ C2x C
−1
4 C4 C2 E

Table 5: Multiplication table of the group D4.

which defines the factor group C3v/C3. This is a group of order 2 (and
therefore cyclic, commutative and isomorphic to the group {1,−1} with real
number multiplication). The multiplication table is given in Tab. 4.

Direct product. We can do the other way around and construct
“larger” groups by using the direct product. Given two groups G = {G} and
G ′ = {G′} of order g and g′ and a commutative multiplication GG′ = G′G.
Then the gg′ pairs GG′ form a group called the direct product group G × G ′.

3 An important example for HTCS’s:

The tetragonal D4h group

We start by describing the tetragonal D4 group which turns out to be a
subgroup of D4h, namely the group of all proper rotations of D4h. This
group contains a four-fold rotation axis (E,C4, C2, C

−1
4 ) and perpendicular to

it four two-fold axes (C2x, C2x′, C2y, C2y′) which are the symmetry operations
of the object in Fig. 2, left panel and is of order 8. The multiplication table
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D4h
D4

Figure 2: The tetragonal D4 and D4h point groups.

is given in Tab. 5.
Next the classes are determined. The symmetry operation E forms its

own class as the operation C2 does. The C4 and C−1
4 operations form the

class called 2C4. The C2x and C2y operations constitute the class 2C ′2 and
the C2x′ and C2y′ operations constitute the class 2C ′′2 . Therefore the D4

group has a total number of nc = 5 classes.
Each of the 5 two-fold rotations forms together with the identity E a

subgroup of order 2 of the D4 group. All these 5 subgroups are isomorphic to
the group C2 = {E,C2}. Furthermore, there are three subgroups of order 4.
These are the groups D2 = {E,C2, C2x, C2y}, the group {E,C2, C2x′, C2y′}
which is isomorphic to D2, and the cyclic group C4 = {E,C4, C2, C

−1
4 }. The

five subgroups of order 2 and the latter 3 subgroups of order 4 exhaust the
number of proper subgroups of D4. Invariant subgroups are subgroups which
consist of classes. The subgroups C2, C4 and D2 are the invariant (proper)
subgroups of D4, their decomposition in classes is given by

C2 = E ∪ 2C2

C4 = E ∪ 2C4 ∪ C2

D2 = E ∪ C2 ∪ 2C ′2 .
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Using these 3 classes to perform a coset decomposition of D4, we get

D4 = C4 + C4C2x

D4 = D2 + D2C4

D4 = C2 + C2C4 + C2C2x + C2C2x′

and the factor groups D4/C4, D4/D2, and D4/C2. The first two are isomor-
phic to the group C2, the last one is isomorphic to the group C4.

4 Representations of a group

With respect to applications, especially calculations with a computer, it is
very handy to have a one-to-one correspondence between an abstract group
under consideration, and a group of matrices, consisting of real or complex
numbers, which “shares some properties” with the former group. These
correspondences are investigated in the theory of group representations.

Representations. Let G be a finite group of order g and M the set of
non-singular complex n× n square matrices, which, taking the matrix mul-
tiplication as the group multiplication, constitute a group called the com-
plex general linear group of order n, denoted GL(n,C). Furthermore let
D:G →M be a mapping with the property of being homomorphic, that is,

AB = C ⇒ D̂(A)D̂(B) = D̂(C) (2)

for A,B,C ∈ G. Then, the set M = {D̂(G):G ∈ G} of matrices is called a
representation of the group G. The dimension dα of a representation α is the
size n of the matrices.

Putting A = E or C = E, respectively, in the former equation, we imme-
diately see that D̂(E) = 1̂, the unit element of G is represented by the unit
matrix. Moreover, D̂(A−1) = D̂(A)−1, that is, the matrix representing the
inverse of a group element is the inverse of the matrix representing the group
element itself.

If the mapping D̂ is isomorphic, that is, homomorphic but one-to-one in
both directions, then the representation is called faithful. Each group has a
trivial representation, the identity representation given by the “1×1 matrix”
D̂(G) = 1 for all G ∈ G. If the order of G is larger than 1, then this
representation is obviously a homomorphism, not an isomorphism.
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Example. To clarify the definitions and properties given, the point
group C4 consisting of a single 4-fold rotation axis will serve. This is a
cyclic group (and therefore Abelian) of order 4 with the elements E, C4, C2,
and C−1

4 and is a subgroup of D4 (see Tab. 5). It is easy to see, that the
2 × 2 rotation matrices with rotations by 0, π/2, π, and 3π/2 constitute a
representation of the group C4:

D̂(E) =

(
1 0
0 1

)
, D̂(C4) =

(
0 −1
1 0

)
,

D̂(C2) =

(
−1 0
0 −1

)
, D̂(C−1

4 ) =

(
0 1
−1 0

)
.

(3)

This representation is faithful and also a unitary representation, because
all constituent matrices are unitary. Instead of doing calculations using the
elements G of the group G, we can use, for many purposes, the representation
matrices D̂(G).

Equivalent representations. Given a representation D1, we can easily
construct others. One method is to take the matrices D̂2(G) = M̂−1D̂1(G)M̂
for all G in G and for a given non-singular matrix M̂ . It is easy to show that
this set {D̂2(G):G ∈ G} is also a representation of the group G isomorphic
to D1. As a consequence, a group has an infinite number of representations,
most of them generated in a trivial way from others. To get rid of the seeming
redundancy, we define an equivalence relation which relates representations
which can be generated from each other in a trivial way. This relation de-
composes the set of all representations into equivalence classes. Afterwards,
we only consider these equivalence classes.

Two representation D̂1 and D̂2 are called equivalent, if there is a non-
singular matrix M̂ such that

D̂1(G) = M̂−1D̂2(G)M̂ , for all G ∈ G. (4)

Two representations which are not equivalent are called inequivalent.
Direct sum. Another method to construct new representation from ex-

isting ones is to form the set of diagonal matrices D̂(G) = diag(D̂1(G), D̂2(G))
from two representations D1 and D2 which also is a representation and called
the direct sum D = D1 + D2 of the representation D1 and D2. For a repre-
sentation to be used in a calculation, is should be as simple as possible, so
we will investigate whether it is possible to decompose a given representation
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into the direct sum of two or more representations. This is the central aim
of the theory of group representations.

A representation which has the property that all of its representation
matrices D̂ can be written in the block form

D̂ =




Â 0̂ 0̂ · · ·
0̂ B̂ 0̂ · · ·
0̂ 0̂ Ĉ · · ·
...

...
...

. . .




with blocks of the same size for all matrices of the representation is called
a reducible representation. The reduction of a given reducible representation
into irreducible representations is assisted by a number of important theorems
stated in the next section.

5 Theorems about representations

If a crystal possesses a certain point group symmetry G, then the Hamiltonian
of the crystal (in absence of external fields and strong spin-orbit coupling)
is invariant with respect to this group. Two electronic wave functions (with
quasimomentum k = 0) which are related by the transformation given by a
group element therefore have the same energy eigenvalue, they are degener-
ate. The same is true for k = 0 vibrational patterns. If there is no accidental
degeneracy, the wave functions (or vibrational patterns) which belong to a
given energy eigenvalues can be classified according to irreducible representa-
tions of the point group G. Irreducible representations on the other hand are
classified using their characters. This classification is contained in character
tables, which are constructed by applying the theorems to be presented in
this section. Proofs in general will be omitted, in this case references will be
given.

Unitarization of a representation: Every representation of a finite group
is equivalent to a unitary representation.

This is a very important theorem, with many consequences. As an exam-
ple consider a 1-dimensional representation. The latter theorem implies that
the 1 × 1 matrices of the representation can all be taken to have absolute
value 1, that is, can be written in the form exp(iϕ). In addition, this theorem
allows us to consider only unitary representations. From now on, we only
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consider unitary, inequivalent, and irreducible representations (IRs).4

Characters. The character χ(D)(G) of a group element G ∈ G with
respect to an IR D is given by the trace of the representation matrix D̂(G),

χ(G) = Tr D̂(G) =

dD∑

i=1

Dii(G) ,

where dD is the dimension of the representation D. Because of the property
χ(M̂D̂M̂−1) = χ(D̂), the character of a group element G is the same for all
equivalent representations. The set of characters {χ(D)(G):G ∈ G} is called
the character of the representation D (and all equivalent ones).

The characters of the representation (3) of C4 are

χ(E) = 2 , χ(C4) = 0 , χ(C2
4) = −2 , χ(C−1

4 ) = 0 .

Note that the character of the unit element E with respect to an IR D is the
dimension dD of the IR. It gives the essential degeneracy of states belonging
to D.

We have seen that two elements A,B ∈ G are conjugated if an ele-
ment G ∈ G exists, such that A = GBG−1. For the IR D then D̂(A) =
D̂(G)D̂(B)D̂(G−1) is valid and because of D̂(G−1) = D̂(G)−1 and the prop-
erty Tr(ABC) = Tr(CAB) of the trace of matrices, the character of A is
equal to that of B. Consequently the character of all group elements belong-
ing to the same class is the same.

The character of an IR is its characteristic feature and can be used to
identify the (inequivalent) IRs of a group. To determine the characters of
the IRs of a group, some theorems are useful.

Dimensions of the IRs: The dimensions dD of the IRs of a group G of
order g obey the relation ∑

D

d 2
D = g . (5)

This is a very useful theorem; for groups with small g the dimensions dD
of all IRs can often be determined already by inspection of (5). The C4

group is of order g = 4. One IR is the trivial one of dimension d = 1. Only
12 + 12 + 12 + 12 = 4 satisfies (5) and, consequently, the C4 group has 4 IRs
of dimension 1 each. The representation given in (3) is therefore reducible.

4In the literature, unitary, inequivalent, and irreducible representations are usually ab-
breviated by “REP.” We use the abbreviation “IR” to stress the property of irreducibility.
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First Orthogonality of Characters: The characters of an irreducible rep-
resentation of a finite group satisfy the orthogonality relation

nc∑

i=1

hiχ
(α)(Ci)

∗
χ(β)(Ci) = gδαβ , (6)

the summation runs over all nc classes Ci of group elements, χ(α)(C) denotes
the character of a group element G of class C in the representation D(a).

Second Orthogonality of Characters: The characters of an irreducible rep-
resentation of a finite group satisfy the orthogonality relation

nr∑

α=1

χ(α)(Ci)
∗
χ(β)(Cj) =

g

hi
δij , (7)

the summation runs over all nr IRs of the group and hi is the number of
group elements contained in the same class as Gi.

Characters χ(α)(C) of irreducible representations are functions of the rep-
resentations D(α), α = 1 . . . nr and the class Ci of elements of the group,
i = 1 . . . nc.

Number of IRs: The number Nr of inequivalent irreducible representa-
tions of a finite group G is equal to the number of classes nc of group elements.

The characters of the nc classes of group elements with respect to the nr
IRs are usually arranged in the character table of the group G.

If we regard (hi/g)χ(α)(Ci) as components of nc-dimensional vectors v (α) =
((hi/g)χ(α)(Ci)) with i = 1 . . . nc or vi = ((hi/g)χ(α)(Ci) with α = 1 . . . nr,
the orthogonality theorems state that v (α)v (β) = δαβ and vi~vj = δij, that is,
considered as rows or columns, they are orthonormal.

6 Example: Character table of the C4v group

To give an example for the construction of character tables using the rules
stated in the last section, we focus on the C4v group. This group is both,
simple enough to be suitable as an example to illustrate the structure and
construction of character tables, and important for this work, because C4v

is an invariant subgroup of the tetragonal group D4h which is the symmetry
group of many high-temperature superconductors.

The point group C4v consists of 4 vertical mirror planes, denoted by σx,
σx′, σy, and σy′ (see Fig. 3), and an additional 4-fold rotation axis C4. The
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other symmetry operations of the group are the identity E and the rota-
tions C2

4 and C3
4 ≡ C−1

4 . This makes a total of 8 symmetry operations, the
group is of order g = 8.

Because of σxC4σx′ = C−1
4 , the symmetry operations C4 and C−1

4 belong
to the same class which we call 2C4. Furthermore, because of C−1

4 σxC4 = σy,
the reflections σx and σy constitute a class 2σv. Similarly, σx′ and σy′ belong
to a class 2σd. Therefore, C4v decomposes into the nc = 5 classes E, 2C4,
C2

4 , 2σv, and 2σd. The number of inequivalent irreducible representations
(IRs) nr of a group is equal to the number nc of its classes, consequently,
nr = 5 for C4v.

Now we use the fact expressed by (5) that the sum of the squares of
the dimensions of all IRs of a group is equal to its order g. The only pos-
sibility to fulfill this is 12 + 12 + 12 + 12 + 22 = 8, that is, the group C4v

has four one-dimensional and one two-dimensional (inequivalent) irreducible
representations.

We start constructing the character table of C4v. The character of the
identity E for any representation is equal to the dimension of the represen-
tation. This gives us the first column of Tab. 6. The first row is also easy,
because for the unit representation the character is 1 for every symmetry
operation in the group.

According to the unitarity law (Sect. 5), all representation matrices can
be chosen to be unitary. Therefore, for one-dimensional representations, the
magnitude of all characters is 1. On the other hand, the second orthogonality
law (7) with i = j states that for every class of symmetry operations, the
sum of the magnitudes of the characters of all the IRs is equal to the order g
of the group divided by the number h of symmetry operations in the class,
g/h. In the case of the classes 2C4, 2σv, and 2σd, this is g/h = 4. The sum
of the absolute squares of the 4 one-dimensional representations is already 4,
consequently the character of the latter three classes is zero in the two-
dimensional representation.

Now we use the fact that for 1-dimensional representations the relation
χ(Gn) = χ(G)n for G ∈ G holds. Therefore the characters of all the classes
in the 1-dimensional representations of the C4v group are ±1. Since the
reflection at a mirror plane is its own inverse, the character of a reflection
has the property χ(σv)

2 = 1 (and analogous for σd), therefore, χ(σv) = ±1.
This is also true for the rotation C4. From the fact that C4 and C−1

4 are in
the same class, it follows that χ(C4) = χ(C3

4), and therefore χ(C4) = ±1.
Let us compare this to the situation in the point group C4 which is the
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C4v E 2C4 C
2
4 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

Γ(r) 3 1 -1 1 1
Γ(r)× Γ(r) 9 1 1 1 1

Table 6: Character Table of C4v . The characters of the 5 irreducible repre-
sentations, of the reducible representation of a vector and the representation
of a 2nd rank tensor are given.

cyclic group generated by the 4-fold rotation C4 and therefore of order 4.
Each symmetry operations is a class of its own. Therefore, we only have
C4

4 = E and χ(C4)4 = 1 with the consequence that ±1 and ±i are all
possible values of χ(C4). A look into a group theory book shows that indeed
there are IRs of the C4 group with the character of the C4 4-fold rotation
assuming the values ±i. The additional mirror planes in C4v prevent the
characters of the 4-fold rotation to become imaginary.

The second orthogonality theorem of characters states that for two dif-
ferent classes, the characters of the different IRs, considered as vectors, are
orthogonal. Using this and the property proved in the last paragraph that
all the characters of the 1-dimensional representations are ±1 in the case of
the C4v groups, the characters of the classes 2C4, 2σv, and 2σd for all the
IRs are determined. Now only the characters of the class C2

4 are left.
These characters—considered as vectors—also have to be orthogonal to

the characters of the other classes. This leaves only two possibilities, the first
is the one in the character table in Tab. 6, and the second which differs only
in an overall sign from the first. This sign is determined by the character of
the trivial representation, χ(A1)(C2

4) = 1.

7 Lattices and translational symmetry

Point groups. We already introduced a considerable number of point of
groups, namely the groups C3, C3v , D4h, and D4. All these groups are
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σx’

σx

σy’σy

Figure 3: Mirror planes of C4v.

point groups, groups of transformations which leave a particular point fixed.
Another one of these point groups is the cyclic group C5, consisting of the 5
rotations by n · 72◦, n = 0, . . . , 4 which leave the pentagon invariant.

Bravais lattice. The characteristic symmetry of a crystal is the trans-
lational symmetry which is described by 3 vectors ai called the primitive
vectors. Such three vectors ai generate a set of points tn =

∑
niai called

lattice vectors or lattice points (and sometimes lattice sites), n = (ni) with
integer numbers ni. The set {tn} is called a Bravais lattice5

In this section, we determine the possible point group symmetries which
are compatible with the translational symmetry of a Bravais lattice given by
three primitive vectors ai. But before doing this, we introduce some terms
and constructions which are in use when discussing properties of crystal
lattices.

Primitive cell. A region of space which contains exactly one lattice
point tn and which fills (without overlapping) the whole space if translating
it through the lattice vectors, is called a primitive cell. One obvious choice
for the primitive cell is the parallelepiped spanned by the three primitive
vectors ai (see Fig. 4(a)). Usually this choice has the disadvantage of not
having the full symmetry of the Bravais lattice. Two ways to circumvent this
problem are common.

Conventional cell and Wigner-Seitz-cell. The first is the conven-
tional (or crystallographic) unit cell which is chosen to be larger than the

5note that for a given Bravais lattice the choice of primitive vectors is not unique.
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(a) (c)(b)

Figure 4: (a) Two different primitive vectors and the primitive cell they span,
(b) non-primitive translations vectors spanning a conventional unit cell, and
(c) the Wigner-Seitz cell of YBa2Cu4O8 (Y-124).

primitive cell in order to have the full point group symmetry (see Fig. 4(b)).
The second choice is the Wigner-Seitz cell which is a primitive cell. Given a
lattice point, the Wigner-Seitz cell contains all points which are closer to the
lattice point under consideration than to any other equivalent (upon trans-
lations) point of the crystal (see Fig. 4(c)). This cell by construction has the
full symmetry of the lattice.

Figure 4 shows the b− c plane of the lattice of YBa2Cu4O8 (Y-124), the
points show the position of a particular atom, for instance the Y atom, in
the lattice. On the left side (a) a certain choice for the primitive vectors is
shown. The perpendicular vectors in (b) are the basis vectors of a suitable
choice of a conventional unit cell. On the right side (c) of the figure the
construction of the Wigner-Seitz cell (grey area) is illustrated.

Let us return to the question of the compatibility of translational and
point group symmetries and the classification of Bravais lattices. We look
for the rotations which are compatible with the translational symmetry of
a Bravais lattice. The origin of the rotation is considered to be a lattice
point. Due to the discrete nature of the lattice, n successive rotations have
to be equal to the identity operation, that is, we consider n-fold rotation
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C4

t3

T1

Cn τ Cn
−1τ

t2

t0 2π
n

t1

T

τ

(a) (b)

Figure 5: The proof (see text) that only the rotations C2, C3, C4, and C6 are
compatible with translational symmetry.

axes (n 6=∞). First we show that the rotation axis of a rotation compatible
with the translational symmetry necessarily is parallel to a lattice vector.
Take a lattice vector t0 and generate the vectors ti = (Cn)it0 for i = 1, . . . , n.
The lattice vector T ≡ ∑n−1

i=0 ti (see Fig. 5(a)) is invariant with respect to
the rotation Cn, and therefore parallel to the rotation axis (if it vanishes
accidentally, we choose another lattice vector t0). The lattice vectors Ti =
ti − ti−1 (Fig. 5(a)) are perpendicular to T because TiT is invariant upon
rotation and

∑
i TiT = 0. We have thus proved that if Cn is a rotation

leaving the Bravais lattice invariant, there are lattice vectors perpendicular
to the rotation axis of Cn. The problem now is reduced to a two-dimensional
one. For the shortest ~τ of the lattice vectors perpendicular to the rotation
axis, then Cn~τ+C−1

n ~τ = 2 cos(2π/n)~τ must be a primitive vector (Fig. 5(b)).
This is only possible for n = 1, 2, 3, 4, and 6 (the case n = 1 is trivial).
Therefore, only rotations by π, 2π/3, π/2, and π/3 are possible candidates
for point group symmetry operations leaving a given Bravais lattice invariant.
Other rotations can be excluded.

Taking these rotations and also the inversion, 32 different groups can be
constructed. They are called the 32 crystallographic point groups. All these
groups are possible point symmetry groups of a given Bravais lattice. Two of
the 32 point groups are the tetragonal D4h and D4 groups. Only the former
of these groups is important when classifying the Bravais lattices, because if
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a Bravais lattice has D4 symmetry, it automatically also has D4h symmetry.
This observation decomposes the set of 32 point groups into 7 subsets. The 7
symmetry groups with maximum symmetry in each of these 7 subsets are the
7 crystal systems which are cubic (Oh), hexagonal (D6h), tetragonal (D4h),
trigonal (D3d), orthorhombic (D2h), monoclinic (C2h), and triclinic (S2).

Lattice with a basis. More complex crystals, as for instance crystals
consisting of different kinds of atoms, do not have the property that all the
atoms are located on a site of a Bravais lattice. This is also the case for
some apparently simple structures as for instance the honeycomb net, which
cannot be described by using just three primitive vectors ai. In such crystals,
however, it is possible to group together few atoms and describe the position
of these groups by means of a Bravais lattice. This construction is called a
lattice with a basis. A simple example for the first case is sodium chloride
(NaCl) which is cubic, with Cl atoms as nearest neighbors of the Na atoms
and vice versa. This lattice is described by a face centered cubic lattice
with a basis consisting of a sodium and a chloride atom. In the system
YBa2Cu4O8, for instance, each primitive cell of the Bravais lattice contains
15 atoms. Sometimes a lattice with a basis is used also to describe the body-
centered cubic (bcc) and face-centered cubic (fcc) Bravais lattices to make
more explicit their cubic symmetry.

The simple Bravais lattice can be considered as a Bravais lattice with a
basis having the full symmetry of the simple Bravais lattice. A basis which
does not have (at least) the full symmetry of the Bravais lattice breaks this
symmetry. This symmetry breaking is possible in different ways which gen-
erate the 32 crystal systems. Consider a orthorhombic Bravais lattice which
has D2h symmetry. A basis can destroy this symmetry in two ways, either
it destroys the horizontal mirror plane and the symmetry becomes C2v or it
destroys the vertical mirror planes and the symmetry becomes D2.

We summarize. Bravais lattices are the set of points generated in three
dimensions by three non-collinear primitive vectors. Symmetry operations
leaving a point invariant have to be compatible with the Bravais lattice.
This is fulfilled just by the C2, C3, C4, and C6 operations out of all possible
rotations. The point groups compatible with the Bravais lattice turn out to
be 32, this is the number of different crystallographic point groups describing
the different types of Bravais lattices with a basis. Selecting the groups with
maximum symmetry, the Bravais lattices without a basis are found. These
can be grouped into 7 types, corresponding to the number of crystal systems.
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8 Vectors, tensors, and their transformation

behavior

The derivation of selection rules for light absorption, Raman scattering, and
other forms of spectroscopy, is intimately related to the decomposition of the
representations that correspond to the transformation laws for the appropri-
ate vectors and tensors, into irreducible representations of the point group
of the crystal under consideration.

Vectors and representation matrices. When rotating by an angle
of ϕ about an axis n , a vector v = (vi) transforms according to the law

v → Rij(n , ϕ) vj

where R̂(n , ϕ) = (Rij(n , ϕ)) is a rotation matrix , which in the special case
of n = ez has the form

R̂(ez, ϕ) =




cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1


 . (8)

Rotations about another axis n ′ can be written in the form

R̂−1R̂(ez, ϕ)R̂

with another rotation matrix R̂, rotating first the axis n ′ to ez, then per-
forming a rotation about the axis ez, and rotating back to n ′: All rotations
by a given angle ϕ are equivalent. Particularly,

Sp R̂(n ′, ϕ) = Sp R̂(ez, ϕ)

holds for any rotation axis n ′.
Consider now a point group G. The proper rotations of the point group

correspond to rotation matrices R̂ and yield a 3-dimensional representation
of the point group G. Vectors transform according to this representation,
therefore it is called the vector representation Γ(r). The character of the
rotation Cn by an angle of 2π/n in the vector representation is given by the
trace of R̂(n , ϕ), that is,

χ(Γ(r))(Cn) = Sp R̂(n , 2π/n) = 1 + 2 cos
2π

n
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n 1 2 3 4 6

χ(Γ(r))(Cn) 3 -1 0 1 2

Table 7: Characters of the n-fold rotation in the vector representation.

and is tabulated in Tab. 7 for the rotations which are consistent with the
translational symmetry of Bravais lattices. The character of rotatory in-
versions is the one of the corresponding proper rotation times −1 for the
inversion. Mirror planes have the character +1.

Let us focus on the C4v group (Tab. 6) and reduce Γ(r) into irreducible
representations. The characters of the vector representation Γ(r) in the
group C4v are given by Tab. 6. From this, the decomposition

Γ(r) = A1 + E (in C4v) (9)

follows easily.
As an illustration of the reduction of the representation associated with

tensors of rank r, we treat the special case r = 2. Extension to the general
case is straightforward. A tensor of rank 2 consists of 3×3 = 9 quantities Tij
which transform under rotation according to

(Tij)→ RikRjlTkl ,

that is, like a product of two vectors. The multiplication of rotation ma-
trices R̂ is related to the product of representations that must be defined
next.

Product representation. Given two representations A and B of a
group G with the representation matrices D(A)(G) and D(B)(G) for G ∈ G,
respectively, we define the product representation A×B by the representation
matrix

D
(A×B)
ij,kl (G) ≡ D

(A)
ik (G)D

(B)
jl (G) . (10)

The character χ(A×B)(G) =
∑

ij D
(A×B)
ij,ij (G) of the product group is given by

the relation
χ(A×B)(G) = χ(A)(G) · χ(B)(G) , (11)

that is, by the product of the character of the representations A and B.
Using this, we see that a tensor of second rank gives raise to a IR

corresponding to the product representation of two vector representations
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Γ(r) × Γ(r). The characters of these representations are also tabulated in
Tab. 6.

In order to be specific, we once again consider the example of the C4v

group. After playing around a little bit with the character table, it turns out
that

Γ(r)× Γ(r) = 2A1 + A2 +B1 +B2 + 2E (12)

is the decomposition we looked for.
Decomposition of a nth rank tensor. For tensors of rank r > 2

the decomposition works in a similar way, but it becomes difficult to carry
it out just by inspection. Fortunately, there is a systematic way to perform
the decomposition. We write the reducible representation D as a direct sum

D =
∑

α

qαD
(α) (13)

of irreducible representations D(α), and look for a way to determine the
coefficients in (13). Calculating the trace of the representation matrices which
are related to (13) yields the equation

χ(D)(G) =
∑

α

qαχ
(α)(G) for all G ∈ G, (14)

which decomposes the characters of the representation D into those of the
irreducible representations. Multiplying (14) by χ(β) ∗(G), summing over all
group elements, and applying the First Orthogonality of Characters, we find

qβ =
1

g

∑

G∈G
χ(β) ∗(G)χ(D)(G) (15)

where g is the order of G.
This is a very important result which leads to the decompositions of a

reducible representation into irreducible ones by using (13), provided the
character table of the group G is known.

The decomposition of an nth rank tensor is now straightforward. Because
of (10), the nth rank tensor transforms according to the representation

D[n] ≡ DΓ(r) ×DΓ(r) × · · · ×DΓ(r)

︸ ︷︷ ︸
n factors

(16)
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whose character is (see 11)

χ[n](G) =
(
χΓ(r)

)n
(17)

and the decomposition into irreducible representations is given by

D[n] =
∑

α

qαD
(α) ; qα =

1

g

∑

G∈G
χ(β) ∗(G)

(
χΓ(r)(G)

)n
. (18)

We determined so far the irreducible representations which are contained
in the representations of a nth rank tensor. But we did not yet decompose
the tensor into parts which transform according to those irreducible repre-
sentations. Such a decomposition is possible for all objects f for which the
transformation behavior with respect to the operation of the point symmetry
group G is defined. We write

f =
∑

α

f (α) with Gf (α) = D(α)(G)f (α) for all G ∈ G .

The quantity D(α)(G) is the representation matrix of the group element G
in the irreducible representation α.

The decomposition can be performed using projection operators. For each
irreducible representation of a group G, projection operator is given by

P (α) =
dα
g

∑

G∈G
χ(α) ∗(G)G , (19)

where Dα is the dimension of the irreducible representation α, and g is the
order of G.

We apply this to the real 2nd rank tensor T̂ , choose the point group C4v

as symmetry group, and work in 2 dimensions. The 2 × 2 representation
matrices of the vector representation have the form

D̂(G) = ±
(

cosϕ − sinϕ
sinϕ cosϕ

)

for ϕ = nπ/4, and the application of the group elements of C4v to the tensor
is defined by

GT̂ = D̂(G)T̂ D̂T (G) .
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Therefore, the decomposition yields

T̂ =
∑

α

T̂ (α) , T̂ (α) =
1

8

∑

G∈C4v

χ(α)(G)D̂(G)T̂ D̂T (G) ,

which evaluates to T̂ = T̂A1 + T̂A2 + T̂B1 + T̂B2 with

T̂A1 =

(
Txx + Tyy

Txx + Tyy

)
, T̂A2 =

(
Txy − Tyx

−(Txy − Tyx)

)
,

T̂B1 =

(
Txx − Tyy

Txx − Tyy

)
, T̂B2 =

(
Txy + Tyx

Txy + Tyx

)
.

The E1g representation does not appear in the decomposition. A table which
shows the results of the decomposition of the 2nd rank Raman tensor for
different point groups can be found in [6].

Independent components of a tensor. One of the important topics
of this chapter is to answer the question concerning the number of indepen-
dent components of a tensor (see [2], Sect. 8.5) for a particular point group
symmetry of a crystal under consideration.

The tensor components corresponding to the irreducible representations
which are different from the identity representation are not invariant when
applying the symmetry operations on the lattice, and therefore have to van-
ish. Only the components which transform according to the identity represen-
tation are non-vanishing. Consequently, we are interested in the number of
times the identity representation occurs in the tensor representation. Putting
γ = 1 into (18), we find the answer that

nind =
1

g

∑

G∈G

(
χΓ(r)(G)

)n
(20)

for a nth rank tensor. For the C4v group a (non-symmetric) tensor of 2nd
rank therefore has

nind =
1

8
[9 + 2 · 1 + 2 + 2 · 1 + 2 · 1] = 2

independent components. In the D4h group, a 4th rank tensor has

nind =
2

16
[81 + 2 · 1 + 1 + 2 · 1 + 2 · 1] = 11
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independent components.
Tensors with additional symmetries. When calculating the Ra-

man efficiency for electronic Raman scattering in superconductors, 4th rank
tensors like

µijkl = 〈µ−1
ij µ

−1
kl 〉 (21)

have to be discussed. The 4th rank tensor cµνρσ of elastic constants is anal-
ogous to µijkl with respect to the symmetries. These tensors clearly are
symmetric when interchanging (i↔ j), or (k ↔ l), or ((i, j)↔ (k, l)).6 The
question arises as to how many independent components a tensor with this
permutation symmetry in a crystal of a given point group symmetry has.

This question can be answered using (18), but the quantity (χΓ(r)(G))n

has to be replaced by the character of the accordingly symmetrized tensor.
The symmetry of a tensor is described by a subgroup of the group Pn

of permutations of n objects (refer to [3], Chap. 15). A permutation of n
objects is denoted by the symbol

p =

(
1

p1

2

p2
· · · n

pn

)

and describes the replacement of the object i by pi. Permutations often
produce cyclic replacements. For instance, in the permutation

p =

(
1

3

2

2

3

4

4

1

)
,

the object 1 is replaced by 3, 3 by 4, and 4 by 1. Object 2 is replaced by
itself, which is also some kind of cyclic replacement. In the cycle notation
the permutation p is denoted by p = (1 3 4)(2), it is said to consist of two
cycles of length ν1 = 3, and ν2 = 1. The equation

∑
m νm = n is always

fulfilled.
But let us go back to the 4th rank tensor µijkl. We denote the mth index

of µijkl by m. Then the permutations which are symmetry operations of µijkl,
are

(i↔ j) → p = (1 2)(3)(4) with ν1 = 2, ν2 = ν3 = 1

(k ↔ l) → p = (1)(2)(3 4) with ν1 = 2, ν2 = ν3 = 1

((i, j)↔ (k, l)) → p = (1 3)(2 4) with ν1 = ν2 = 2.

6Recall that µ̂−1 is the inverse effective mass tensor which has the property µ−1
ij (k) =

µ−1
ji (k).
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Point group independent components
of crystal of µijkl
{E} 21
D2h 9
D4h 6
Oh 3

Table 8: Independent components of the tensor k -independent tensor µijkl
defined in (21).

These three permutations generate a subgroup P of Pn. This subgroup
consists of 12 elements, all of which leave the tensor µijkl invariant.

The character of a tensor which is invariant under the subgroup P is given
by the sum

χP(a) =
1

ordP
∑

p∈P
{χ(a)}ν1{χ(a2)}ν2 · · · {χ(am)}νm , (22)

(see [2], Eq. (8.5.13)) where χ(a) is the character of a ∈ G in the vector
representation and νi is the length of the cycles in the permutation p. The
number of independent elements nind then is given by (18), that is,

nind =
1

ordG
∑

a∈G
χP(a) ,

where ordG denotes the order of the point group G.
For a given group G, we consider (22) for the special case of a symmetric

second rank tensor. The permutation group is given by P = {E, (1 2)} where
ν1 = 2 for p = E and ν2 = 1 for p = (1 2). This yields

χsy(a) =
1

2

[
χ(a)2 + χ(a2)

]

which is the character of the symmetric product representation.
In Tab. 8 we have tabulated the number of independent elements of µijkl

for some given crystal point groups. If the crystal has no point symmetry at
all (or is triclinic) then only the symmetry with respect to the permutation
of the tensor indices reduces the number of independent components of the
tensor, in our case from 34 = 81 to 21. Additional point group symmetries
further reduce the number of independent components of the tensor down
to 3 for the cubic case.
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9 Classification of Γ-point phonons

according to point group symmetry

The irreducible representations of a point group of a crystal are an indispens-
able tool for the classification of the normal vibration modes of the crystal.
For one-phonon (dipole) Raman scattering, only phonons with the full trans-
lational symmetry of the crystal, that is, k = 0 or Γ-point phonons are of
importance, and will be under consideration exclusively in this section.

The restriction to k = 0 phonons, and its consequence that the vibra-
tional displacement patterns have the same translational symmetry as the
crystal, allows us to focus on just one unit cell. When performing the group-
theoretical treatment of the phonons, we also have to identify atoms which
are related by a translation of the Bravais lattice. In the case of a system of
two CuO planes, there are 6 independent sites. In the upper plane, there is
one Cu (Cu(2)) site and two O sites (O(2) and O(3)). In the lower plane,
there are also three independent sites, one Cu site and two O sites. The point
symmetry group is D4h (see Fig. 6).

An important observation is the fact that normal modes transform ac-
cording to irreducible representations of the point group G of the crystal. If
we label the inequivalent atoms in the primitive unit cells with k = 1, . . . , N ,
then the relation between the displacement uk of a certain atom k, and the
phonon normal coordinate Qs of the phonon labeled by s = 1, . . . , 3N is
given by

uk =
1√
mk

∑

s

Qse
(s)
k . (23)

The mass of atom k is denoted by mk, and e
(s)
k are the eigenvectors of the

phonon s. The Hamiltonian is given by

E =
1

2

∑

s

[
Q̇2
s + ω2

sQ
2
s

]

where ωs denotes the frequency of the phonon s. From this equation it
becomes clear that the normal coordinates which belong to a given energy ω,
transform according to a certain representation of the point group G. For
cases of no accidental degeneracy, which are the only ones being considered
here, this implies that the normal coordinates transform according to an
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Figure 6: The two CuO planes in two-plane high-Tc superconductors.

irreducible representation of G, and we write

GQs =
∑

s′

Qs′Ds′s(G)

for all G ∈ G. According to 23, the normal coordinates Qs and the displace-
ments uk are related linearly. Therefore, we will perform a group-theoretical
investigation of the displacements.

We consider the effect of symmetry operations on the equilibrium posi-
tion rk and displacement uk of the atom k in the primitive unit cell. The
vectors rk transform according to the vector representation, that is,

Grk = R̂(G)rk = rk′ ,

the transformation takes the atom from the position k to position k′. For the
case of the displacements, the transformation law is more difficult, because
the displacements transform like vectors, but at the same time, the atoms
to which they refer, change place. When the transformation takes an atom
from site k to site k′, then displacement vector of the atom at site k′ becomes
that one of the atom at site k rotated by a rotation matrix,

Guk′ = R̂(G)uR̂−1(G)rk′
= R̂(G)uk .

The N displacement vectors U = (u1, . . .uN)T transform according to a
3N -dimensional representation R̂3N like

GU = R̂3N (G)U .
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E 2C4 C2
4 2C ′2 2C ′′2 I 2IC4 σh 2σv 2σd

NR 6 2 6 0 0 0 0 0 6 2
χ(Γ(r)) 3 1 -1 0 0 0 0 0 1 1
χ(3N) 18 2 -6 0 0 0 0 0 6 2

Table 9: For each class of the tetragonal point group D4h, the number NR of
invariant atoms of Fig. 6, the character of the class in the vector representa-
tion and in the representation R̂3N is given.

The decomposition of the representation R̂3N gives the different irreducible
representations of the normal modes. For the decomposition we only need
the character of the representation, that is, the trace of R̂3N . Only atoms
that do not move in the transformation contribute non-vanishing diagonal
elements to R̂3N . For an atom k that does not move, Guk = R̂uk, where R̂
is a 3 × 3 rotation matrix. The character of R̂ was already calculated in
Sect. 8 and tabulated in Tab. 7. As a consequence, the character of the
representation R̂3N is given by

χ(3N)(G) = NRχ
(Γ(r))(G) ,

where NR is the number of atoms which are not moved in the transformation
represented by G.

The system shown in Fig. 6 is composed of 6 independent sites and pos-
sesses tetragonal D4h symmetry. In Tab. 9, the number NR of atoms which
are not moved by the transformation represented by G ∈ G, the character G
in the vector representation, and its product, the character of the represen-
tation R̂3N is given for each of the classes of D4h.

The decomposition of the representation R̂3N by using (14) and (15) is
easy now, and yields the result

2A1g +B1g + 3Eg + 2A1u +B1u + 3Eu .

The displacement patterns which belong to the particular normal modes
are determined by applying the projection operators to the displacement
vectors U .

The modes carrying an index “g” (gerade) are even with respect to the
inversion operation. Therefore they carry no dipole momentum and are for-
bidden in absorption. The “u” (ungerade) modes are odd with respect to
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inversion and are forbidden in Raman scattering (see next section). The
even modes turn out to be Raman active. The odd modes are active in in-
frared absorption saved one exception: the A1u and B1u modes. The B1u

modes possesses an odd parity symmetry pattern, but due to the fact that
χ(B1u)(C4) = −1, the dipole momentum vanishes (O(2) and O(3) carry the
same ionic charge) and so does the coupling. This can also be seen in a
more formal way. The Raman vertex (in effective mass approximation, i.e.
far from resonance) corresponds to a symmetric 2nd rank tensor and decom-
poses in D4h into

symmetric 2nd rank tensor→ 2A1g +B1g +B2g + Eg ,

and the vector decomposes into

vector→ A2u + Eu .

Therefore, the A1u, B1u, and Eu phonons are Raman active and the Eu
phonons are infrared active. The A1u and B1u phonon, however, are neither
Raman- nor infrared-active. They are called silent modes.

10 Selection rules for Raman scattering

by phonons

When talking about selection rules for Raman scattering, one usually refers
to the fact that for different polarization configurations (eL, eS) of the incom-
ing and scattered light, different excitations can be detected using Raman
spectroscopy.

The Raman efficiency S is related to a 2nd rank tensor, the Raman ten-
sor T̂ via the light polarization unit vectors eS and eL by the relation

S ∼
∣∣∣e∗S · T̂ · eL

∣∣∣
2

.

Certain excitations cause certain non-vanishing matrix elements of the Ra-
man tensor T̂ and allows for selecting them by an appropriate choice of the
light polarization.

We focus on phonon Raman scattering (restricted to Stokes scattering)
and discuss its microscopic mechanism. The basic process leading to phonon
Raman scattering is shown in Fig. 7. The incoming photon is annihilated
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Figure 7: The photon-phonon vertex involving an electronic pair-excitation.
Note that there is also another diagram contributing in which the phonon is
created by scattering with the hole.

and creates an electron-hole pair. Then either the electron or the hole scatter
and create a phonon. The electron-hole pair finally recombines and creates
the scattered photon. Due to the fact that the velocity of light is much larger
than the Fermi velocity, the transition leading to the electron-hole pair can be
considered to be direct. The transition corresponding to the recombination
of the electron-hole pair has to be direct as well, and therefore the created
phonon is a Γ-point phonon.

The vertices related to the creation and the annihilation of the electron-
hole pair are matrix elements of the operators eL ·p and e∗S ·p, respectively.
We use cartesian components and take the unit vectors out of the expression
for the transition amplitude of the process described by the diagram in Fig. 7.
Then the matrix elements are 〈n1k |pi|nik〉 and 〈nik |pj|n2k〉. They transform
like vectors and thus their product like a 2nd rank tensor.

We assume now that it is possible to consider only one phonon in our dis-
cussion. This is given for instance when the other phonons are not very close
in frequency to the phonon under discussion.7 Then, the phonon will not
mix with other phonons, and it is enough to take into account one electron-
phonon vertex g. The creation of a phonon is accompanied by the scattering
of an electron (hole) with quasimomentum k from band n1 to n2, and there-
fore the vertex g depends on k , n1, and n2 only.

The expression corresponding to the diagram in Fig. 7, which gives the
amplitude for the process of creating a phonon by inelastic scattering of light
(involving an electron-hole pair), is given by a product of the vertices and

7Otherwise, a perturbation like anharmonic coupling may mix different modes which
belong to the same IR, but have different energy eigenvalues.



c© 1999, Thomas Strohm, www.thomas-strohm.de 34

three electronic Green’s functions, and involves a summation 〈·〉 over the
Brillouin zone. We write

〈pi(ni → n1, k) · gn1n2;k · pj(n2 → ni, k) · Λnin1n2;k (ω)〉 , (24)

where the product of the Green’s functions has been denoted by Λnin1n2;k(ω).
This treatment also shows that the quantity defined in (24) is proportional
to the Raman tensor T̂ .

The displacement pattern of a Γ-point phonons can be classified8 accord-
ing to the irreducible representations of the point group of the crystal. We
denote the IR which represents the transformation properties of the displace-
ment pattern of the phonon by µ. Then, the electron-phonon vertex belongs
to the same IR, we write gµk .

The matrix elements of the momentum operator in (24) transform ac-
cording to the components of the vector representation. Hence, the product
of both transforms like a 2nd rank tensor.

Green’s functions transform only by virtue of their dependence on the
dispersion relation of the excitations which they describe. The dispersion
relation εk of the electrons is fully symmetric. Therefore the quantity Λk(ω)
in (24) is a scalar.

The averaging of the second rank tensor formed by the two momentum
matrix elements and the electron-phonon vertex projects the irreducible rep-
resentation µ out of the 2nd rank tensor,9 all other irreducible representations
vanish. As a conclusion, the amplitude (24) (which is proportional to the Ra-
man tensor) only yields a non-vanishing contribution to that component of
a the Raman tensor which belongs to the IR µ.

We give an example using the point group C4v. This group describes the
point symmetry of a square. Its group table is given in Tab. 6.

The representation to which the Raman tensor (as every second rank
tensor) belongs is denoted by Γ(r) × Γ(r) and is the product of two vector

8if there is no accidental degeneracy.
9This can be seen as follows. Denote the product of the momentum matrix elements

by Tij , and decompose it into irreducible representations Tij =
∑
α T

(α)
ij . The product of

the electron-phonon vertex gk and the function Λk will be denoted by hk . If gk transforms

according to the irreducible representation µ, then hk does so as well, hence we write H
(µ)
k .

Then the average 〈T (α)
k ;ijh

(µ)
k 〉 vanishes if α 6= µ. This is the same is we replace the average 〈·〉

by a sum
∑

k∈star{k0} · over the star of a particular, but arbitrary quasimomentum k0. The

product T
(α)
k ;ijh

(µ)
k , however, does not vanish necessarily (saved cases when the star of k

consists of just one element).
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representations. Using the orthogonality relations for characters of represen-
tations, the decomposition

Γ(r)× Γ(r) = 2 · A1 + A2 +B1 +B2 + 2 · E

can be given. The projection of the components of the Raman tensor to the
different IRs is performed using projection operators and yields the result

T̂ = T̂A1
1 + T̂A1

2 + T̂A2 + T̂B1 + T̂B2 + T̂E1 + T̂E2 , (25)

where the components T̂ µ are given by

T̂A1
1 =



a

a


 , T̂A1

2 =




b


 , T̂A2 =




c
−c




T̂B1 =



d
−d


 , T̂B2 =




e
e


 , T̂E1 =




f
f




T̂E2 =



g g


 .

(26)

From this result is becomes clear, that in parallel polarizations, only A1-
and B1-phonons can be detected. Phonons belonging to other IRs will not
appear in the Raman spectrum. On the other hand, A1- and B1-phonons
will not be visible in crossed polarization configurations.

One important final note is in order. The selection rules only involve the
polarization vectors, but not the direction of the wavevectors of the incoming
and scattered light and, therefore, are not depending on whether a Raman
experiment is performed in backscattering or forward scattering geometry.
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