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Abstract

This publication gives a short introduction to Green’s function as
used in theoretical solid state physics (and also in quantum field the-
ories). Second quantization is presented and the perturbation theory
based on Green’s functions for zero temperature is derived. Feynman
diagrams are explained.
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1 Introduction

”... It might be noted, for the benefit of those interested in
exact solutions, that there is an alternative formulation of the
many-body problem, i.e., how many bodies are required before we
have a problem? G.E. Brown points out, that this can be answered
by a look at history. In eighteenth-century Newtonian mechanics,
the three-body problem was insoluble. With the birth of general
relativity around 1910 and quantum electrodynamics in 1930, the
two- and one-body problems became insoluble. And within mod-
ern quantum field theory, the problem of zero bodies (vacuum) is
insoluble. So, if we are out after exact solutions, no bodies is al-
ready too many!”
(in: R.D. Mattuck, A Guide to Feynman Diagrams in the Many-
Body Problem)1

Only a few problems in quantum mechanics can be solved exactly. There-
fore, one is dependent upon approximation schemes. One of these is pertur-
bation theory. In perturbation theory, the Hamiltonian H of the system
under investigation is split into a “trivial,” that is, exactly solvable part H0,
and a perturbation V and written as

H = H0 + V .

Perturbation theory then uses the knowledge of the solution to H0 (i.e., of
its eigenfunctions |n〉0 and eigenvalues E0

n) together with the perturbation V
to give an approximation to the solution of the full Hamiltonian H. In its
simplest form, for the case of a one-particle problem with a discrete non-
degenerate spectrum, the eigenvalues En of H are approximated by En ≈
E0
n + 0〈n|V |n〉0 to first order in V .

It is clear that in the case of a many-particle system, the things are
getting much more complicated, but surprisingly, a very nice and physically
transparent perturbation theory can be given. This perturbation theory is
based on Green’s functions which characterize a quasi-particle in the sense

1Despite of having taking this citation out of the many-particle book of Mattuck [1],
most of the material here resembles quite close the introduction presented in the book of
Mahan [2] with traces from the book of Abrikosov, Gorkov, and Dzyaloshinski [3]. Also
very instructive is the book of Landau and Lifshitz [4]. For those who like to give an eye
to applications in physics, the book of Schrieffer [5] is great.
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of Landau’s Fermi liquid theory (see [4]. Landau, however, did not make use
of Green’s functions in his theory). We are going to present this theory in
the appendix at hand.

2 Second quantization

The first forms of quantum mechanics given by Schrödinger’s wave equa-
tion and Heisenberg’s matrices though originally developed for the descrip-
tion of systems with single particles, can also be applied to a system with
a fixed number N of identical particles. Nevertheless this is very cumber-
some, mainly because of the Pauli principle forcing the wave functions to
be antisymmetric (fermions) or symmetric (bosons) when exchanging two
particles. Antisymmetrizing wave functions (usually done by using a Slater
determinants) is rather complicated and error-prone. Therefore, a different
representation for quantum mechanics, the second quantization, has been
developed to remove the problems just mentioned. Indeed, second quan-
tization removes the problem of antisymmetrizing (or symmetrizing) wave
functions—the formalism of second quantization automatically takes care of
that. Additionally, it allows for the treatment of systems with a varying
number of particles, such as phonon or photon systems, or for the treatment
of the superconducting state as formulated in the BCS-theory.

Quantum mechanics, in its original formulation, deals with operators act-
ing on wave functions. This is also the case in the formulation provided
by second quantization. But the operators used in second quantization are
rather different from those in the original formulation which we call the first
quantization. In first quantization we have learned how to describe a given
physical system by means of the Hamilton operator. The description of the
physical system in second quantization is based as well on a Hamilton op-
erator, but its form is completely different from that of the former. One
of our goals here is to show how to construct the Hamiltonian used to de-
scribe a given physical system in second quantization when the corresponding
Hamiltonian for first quantization is given.

Let us first summarize the treatment of a system of a fixed number N of
identical particles in first quantization. If one of the particles is described by
the Hamiltonian

h0(p, r) =
1

2m
p2 + U(r) ,
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the collection of N identical and not interacting particles is represented by
the N -particle Hamiltonian

H0 =

N∑

i=1

h0(pi, ri) (1)

where the operators pi and ri are acting on the particle i. The wave functions
of the N -particle system are

ψ(r1 . . . , rN)

which can be written as a linear combination of the functions

ψk1(r1) · . . . · ψkN (rN) ,

that is, products of single particle wave functions ψk (r) which are usually
chosen to be eigenfunctions of the Hamiltonian h0, and therefore given by

h0ψk (r) = εkψk (r) ,

where k is a quantum number denoting a stationary state of the single-
particle Hamiltonian h0. In a translationally invariant system or a crystal,
this may be the momentum or quasimomentum, respectively, together with
a spin index if the particles under discussion carry such property. Note
that these N -particle wave functions have to be antisymmetrized (we fo-
cus on fermion systems; for bosonic systems, the wave function has to be
symmetrized), and therefore, all the single particle states ki have to be dif-
ferent. Otherwise the wave function vanishes, expressing the fact that a
single-particle state can be occupied only once in fermionic systems.

A translationally invariant two-particle interaction as for instance the
Coulomb interaction is represented in the N -particle system by the Hamil-
tonian

HI =
1

2

N∑

i,j=1
i6=j

V (ri − rj)

summing over all combinations of two particles. The factor 1/2 compensates
for a double-counting in the sum over i and j.
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2.1 Creation and destruction operators

In second quantization, new operators are introduced. These are the creation
and destruction operators. Given a state |〉, the creation operator c+

λ adds
a particle in the single-particle state ψλ to |〉. If |〉 is an N -particle state,
then c+

λ |〉 is an (N+1)-particle state. If the state |〉 already contains a particle
in state λ, the expression c+

λ |〉 vanishes. The destruction2 operator cλ works
in a similar way. It removes a particle in the single-particle state λ from
the (many-body) state |〉, and destroys the entire many-body state, if such
particle was not there. As the notation suggests, the creation and destruction
operators are mutually hermitian conjugate.

For bosons, creation and destruction operators b+
λ and bλ are also defined.

They work similarly to their fermion-colleagues, but allow for a multiple-
occupancy of the single-particle states. That is, the creation operator b+

λ

never annihilates a state |〉, whether it already contained particles in the
single-particle state λ or not.

These properties of the fermionic and bosonic creation and destruction
operators are guaranteed by anticommutation and commutation rules, re-
spectively. For fermions, the anticommutators

{cλ, cµ} = {c+
λ , c

+
µ } = 0

{cλ, c+
µ } = {c+

µ , cλ} = δλµ
(2)

guarantee antisymmetry, because cλcµ = −cµcλ, and prevent from double-
occupancy because for µ = λ, we have cλcλ = −cλcλ = 0. The second
relation (2) taken for µ = λ determines the eigenvalues of the creation and
destruction operators. Applied to a state |〉, it yields cλc

+
λ |〉 + c+

λ cλ|〉 = |〉.
If the single-particle state λ is occupied in |〉, the first term in the sum will
vanish whereas the second one reproduces |〉 with a factor of one. If the state
is unoccupied, the first term yields a factor of one, while the second vanishes.

For the bosonic operators, which have to express the fact that many-
particle states of a system composed of identical bosonic particles are sym-
metric upon exchange of two particles, the commutation relations

[bλ, bµ] = [b+
λ , b

+
µ ] = 0

[bλ, b
+
µ ] = −[b+

µ , bλ] = δλµ
(3)

hold and describe the fact that single-particle boson states can be occupied
multiply.

2We use the terms “destruction operator” and “annihilation operator” interchangeably.
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Note that because of their non-hermiticity, the creation and destruction
operators are not observable. The importance of these operators lies in the
fact that all other operators can be expressed as linear combinations of prod-
ucts of creation and destruction operators. An example are the particle
number operator N , and the Hamiltonian H0, which are given by

N =
∑

k

nk =
∑

k

c+
k ck and H0 =

∑

k

εkc
+
k ck . (4)

where nk is the number operator counting the number of particles in the
single-particle state k , and εk is the single-particle dispersion relation. States
which are eigenstates to the particle number operator N contain a fixed
number of particles.

We introduce next the rules for determining the form that an operator
given in first quantization assumes the second quantization. One-particle
operators of the form O(1) =

∑
iO

(1)(pi, ri) are expressed in second quanti-
zation as

O =
∑

αβ

c+
αO

(1)
αβcβ with

O
(1)
αβ = 〈α|O(1)|β〉 =

∫
d3r ψ∗α(r)O(1)(p, r)ψβ(r)

(5)

For a two-particle operator

O(2) =
∑

i6=j
O(2)(pi, ri; pj, rj)

its corresponding second quantized operator O becomes

O =
∑

αβγδ

c+
α c

+
βO

(2)
αβγδcγcδ with

O
(2)
αβγδ = 〈αβ|O(2)|γδ〉

=

∫
d3r d3r′ ψ∗α(r)ψ∗β(r ′)O(2)(p, r ; p ′, r ′)ψγ(r

′)ψδ(r)

(6)

The application of these rules to H0 is easy. Suppose the external poten-
tial U(r) vanishes. Then plane waves are eigenstates of the single-particle
Hamiltonian h0 (for simplicity we disregard the spin), and because of the
relationship ∫

d3r e−ikαr p2

2m
e−ikβr =

k 2
α

2m
δαβ ,
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the second quantized Hamiltonian for the non-interacting system is given by
the equation

H0 =
∑

k

εkc
+
k ck with εk =

k 2

2m
. (7)

The translation of a two-particle operator like the Coulomb interaction to
the second quantized form is more delicate. According to (6), for a system
with continuous translational symmetry we have to evaluate the integral

Vkαkβkγkδ

∫
d3r d3r′ ei(kα−kδ)rei(kβ−kγ)r ′ 4πe2

|r − r ′|

Using kα = k + q , kβ = k ′ − (q + ~δ), kγ = k ′, and kδ = k , the exponentials

can be written as exp(iq(r − r ′)) · exp(−i~δr ′). The fact that the Coulomb
interaction just depends on the difference r − r ′, and not on r and r ′ in-
dividually, implies that ~δ = 0, otherwise the integral would vanish. We are
then left with the expression

Vk+q ,k ′−(q+~δ),k ′,k = δ~δ,0

∫
d3r d3r′

e−iq(r−r ′)

|r − r ′| = Ω · 4πe2

q2
δ~δ,0

where Ω is the integration volume. This matrix element only depends on the
differences kα−kδ and kβ−kγ of the momenta of the scattered and incoming
electrons, respectively. This is a consequence of the continuous translational
symmetry of the system. The fact that the interaction depends only on the
coordinates through |r − r ′| implies that in the scattering process the two
interacting electrons cannot exchange momentum nor angular momentum
with the rest of the system (this is only valid for free electrons. In a crystal,
the pseudopotential breaks the continuous translational symmetry as well
as the rotational symmetry of the Hamiltonian). The scattering process
conserves momentum. Putting the matrix element under discussion into the
expression for the two-particle operator in second quantization leaves us with
the expression

V =
1

2

∑

k ,k ′,q

4πe2

q2
c+

k+qc
+
k ′−qck ′ck (8)

which can be represented in an obvious way by the diagram in Fig. 1. Two
electrons with momenta k and k ′ are propagating. Then they interact and
continue propagating with momenta k +q and k ′−q . The total momentum
is conserved, the label q on the dashed line denotes the momentum transfer.
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k k+q

k’ k’−q

q

Figure 1: The Coulomb interaction.

2.2 Normalizations and Fourier transforms

A final word on the normalization of wave functions and, related to that, the
use of Fourier transformations. The Fermion field operators are defined by
Ψ(r) =

∑
λ aλψλ(r) using the single particle wave functions ψλ(r). We work

in a box of volume V , therefore the normalization condition for the wave
functions is

∫
V
d3r ψλ(r)ψλ′(r) = δλλ′ . In the case of free particles, the wave

functions are plane waves ψk (r) = V −1/2 exp ikr .
The Fourier transformation for functions of time is given by the expres-

sions

f(ω) =

∫ ∞

−∞
dt eiωtf(t) and f(t) =

∫ ∞

−∞

dω

2π
e−iωtf(ω)

where the frequency ω is a continuous variable. For functions of space, the
Fourier transform is given by

fk =

∫

V

d3r e−ikrf(r) and f(r) =
1

V

∑

k

eikrfk

whereas the variable k is discrete. The adjacent values of k have a distance
of 2π/L, where V = L3. When having to perform k-space summations, we
can convert them to integrals. This is possible for large V , and done by
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substituting

1

V

∑

k

→
∫

d3k

(2π)3
and δkk ′ →

(2π)3

V
δ(k − k ′) .

When manipulating expressions, we normally use the k-space summations
and switch to integrals only if a k-space sum has to be calculated explicitly.

3 The zero-temperature Green’s function

In perturbation theory, the many-body Hamiltonian H is split into a “simple”
part H0 (which is solvable exactly, that is, whose eigenfunctions and -energies
are known), and a nontrivial part V , the particle-particle interaction treated
as a perturbation. We denote the known ground state of the Hamiltonian H0

by |0〉, and the ground state of the complete Hamiltonian H by |GS〉. The
latter is often referred to as the exact ground state to distinguish it from the
former. Furthermore, the Hamiltonian H0 is assumed to describe a collection
of systems of identical particles as in (1), such that single-particle excitations
are defined. Let us denote the wave functions describing these single-particle
excitations by ψλ.

The first definition of the Green’s function is given in the Heisenberg rep-
resentation, in which the operators are time-dependent and the wave func-
tions are not (see Tab. 1). This allows for a very clear physical interpretation
of the Green’s function.

The zero-temperature Green’s function G for a system of electrons is given
by the ground-state expectation value

G(λ, t− t′) = −i〈GS|T{cH,λ(t)c+
H,λ(t

′)}|GS〉 . (9)

In this definition, the Heisenberg operators3 c+
H,λ(t) and cH,λ(t

′) create and
destroy, respectively, an electron in the single-particle state ψλ, at the time t
and t′, respectively. The state ψλ is an eigenstate of the unperturbed Hamil-
tonian H0 for the case when the system contains exactly one particle. In

3We will use the Schrödinger-, Heisenberg-, and interaction-representation in this ap-
pendix. Operators or wave functions in the Schrödinger representation either will carry
an index “S” or just no time-argument. The Heisenberg-representation is denoted by an
index “H”. In the interaction-representation, operators and wave functions just carry a
time-argument.
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Schrödinger rep. Heisenberg rep. interaction rep.

OS OH(t) = eiHtOSe
−iHt O(t) = eiH0tOSe

−iH0t

ψS(t) = e−iHtψS(0) ψH = ψS(0) ψ(t) = eiH0tψS(t)

Table 1: Definition of the representations under use.

the Heisenberg representation (see Tab. 1), the time-dependence of the c-
operators is given by c+

H,λ(t) = exp(iHt)c+
H,λ(0) exp(−iHt). The “opera-

tor” T is the time-ordering operator. Given two or more time-dependent
operators, it orders these in such a way that the operators with later times
are left (“the future is left”), and, additionally puts a minus sign for each
interchange of two fermionic operators (i.e. anticommuting operators). The
interchange of bosonic operators does not alter the sign. For the special case
of two fermionic operators A(t) and B(t′), this means

T{A(t)B(t′)} =

{
A(t)B(t′) for t− t′ > 0
−B(t′)A(t) for t− t′ < 0

and leaves undetermined intentionally the case t = t′.
The physical interpretation of the Green’s function (9) for the case t > t′ is

as follows. At the time t′, an electron in the single-particle state ψλ is added to
the exact ground state |GS〉. This electron then propagates in the system and
interacts with other electrons as a consequence of not being in an eigenstate
of the full Hamiltonian H. At a later time t, the electron is removed from
the system. The quantity G(λ, t − t′) then describes the amplitude at the
time of this removal. In the special case V = 0 of no present perturbation,
the electron will stay in the state ψλ and the magnitude of G(λ, t − t′) will
be one for all values of t− t′ > 0.

4 Interaction representation and S-matrix

Although the definition given in (9) is physically rather clear, it poses some
problems. First of all, the exact ground state |GS〉 needed to evaluate (9) is
not known: its determination is the essential problem of many-body theory.
Second, there is no clear separation of the implications of the free part H0

and the interaction part V of the Hamiltonian H on the Green’s function.
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This makes our goal of developing a perturbation theory for the determi-
nation of G unnecessarily difficult. These deficiencies will be remedied by
restating (9) in the interaction representation (see Tab. 1) and introducing
the S-matrix. The interaction representation makes the operators as well as
the wave functions time-dependent. The trivial time-dependence generated
by H0 is put into the operators, and the nontrivial part, corresponding to V ,
is put into the wave functions by writing

O(t) = eiH0tOSe
−iH0t

ψ(t) = eiH0tψS(t) = eiH0te−iHtψS(0) = U(t)ψS(0) ,

where the unitary matrix U(t) = eiH0te−iHt has been introduced. For vanish-
ing perturbation V = 0, this matrix becomes the unit matrix, and therefore
the interaction representation reverts to the Heisenberg representation. The
S-matrix S(t, t′) can be defined by means of the U -matrix,

ψ(t) = S(t, t′)ψ(t′) = U(t)U+(t′)ψ(t′) , S(t, t′) ≡ U(t)U+(t′) (10)

it “takes ψ from t′ to t.” The S-matrix contains the time-evolution of the
wave functions in the interaction representation. The properties of the S-
matrix are the following:

1. S(t, t′) ≡ 1 if V = 0

2. S(t, t) = 1

3. S(t, t′)S(t′, t′′) = S(t, t′′) (transitivity)

4. S+(t, t′) = S(t′, t) (time reversal).

The most important of these properties is the third one, it allows for the
connection of two subsequent time-evolutions.

Just by calculating the time-derivative of the definition of the U -matrix,
we can give the differential equation

d

dt
U(t) = −iV (t)U(t) (11)

which together with the condition U(0) = 1 can be used to determine U(t)
and, therefore, by (10) the S-matrix S(t, t′). The solution for U(t) is given
by integrating (11) once and iterating this process. This yields the series

U(t) = 1− i
∫ t

0

dt1 V (t1) + (−i)2

∫ t

0

dt1

∫ t1

0

dt2 V (t1)V (t2) + · · · (12)
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B

A

1 2t  > t

t1

t2

t

t

Figure 2: The integration volume for the correction to the S-matrix in second
order perturbation theory.

which is an exact solution to (11). However, (12) is rather inconvenient
because of the complicated integration limits, which, for the case of the term
of second order in V are given by region A in Fig. 2. Exchanging t1 and t2 in
the term of second order in V changes the integration region from region A
to region B, but leaves the integral (12) unchanged. In both cases A and B,
the two operators V (t) in the integral are ordered in such a way that the
operator acting at the later time is to the left. Therefore, the integral under
consideration is equivalent to

(−i)2

2

∫ t

0

dt1

∫ t

0

dt2 T{V (t1)V (t2)} ,

where the integration region is now a square. Arguing along the same lines
for the other terms in the series (12), it can be shown that this series can be
written in the form

U(t) = 1 +

∞∑

n=1

(−i)n
n!

∫ t

0

dt1 · · ·
∫ t

0

dtn T{V (t1) · · ·V (tn)} . (13)

If we use the definition of the exponential function and the convention that
the time-ordering operator T operating on the exponential function is equiv-
alent to operating on every term in the corresponding series expansion indi-
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vidually, the S-matrix (10) is given by the expression

S(t, t′) = 1 +

∞∑

n=1

(−i)n
n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtn T{V (t1) · · ·V (tn)}

= T exp

(
−i
∫ t

t′
dt0 V (t0)

) (14)

with the perturbation Hamiltonian V in the interaction representation.
By just introducing the interaction representation, our main problem that

the exact ground state |GS〉 is unknown, remains unsolved. But the S-matrix
is the key to solve it. Gell-Mann and Low [6] have proven a theorem which
states that the exact ground state |GS〉 (which is time-independent in the
Heisenberg representation) is given by

|GS〉 = S(0,−∞)|0〉 .
The exact ground state can thus be generated by applying the evolution
generated by the S-matrix from t = −∞ till t = 0 to the known ground state
|0〉 of the unperturbed part of the Hamiltonian H0.

Because of time reversal symmetry, it is clear that by applying the op-
erator S(∞, 0) to the exact ground state |GS〉, we will recover the ground
state |0〉 of H0 up to a phase.4 That is,

S(∞, 0)|GS〉 = eiϕ|0〉 or 〈0|S(∞,−∞)|0〉 = eiϕ ,

which is a very important relation allowing us to write the bra-vector 〈GS|
as

〈GS| = 〈0|S(−∞, 0) =
〈0|S(∞, 0)

〈0|S(∞,−∞)|0〉 .

We apply the results derived in the discussion above and especially the
relation cH,λ(t) = S(0, t)cλ(t)S(t, 0) to the Green’s function (9). This yields

〈GS|cH,λ(t)c+
H,λ(t

′)|GS〉

=
〈0|S(∞, t)cλ(t)S(t, t′)c+

λ (t′)S(t′,−∞)|0〉
〈0|S(∞,−∞)|0〉

(15)

4We suppose that the ground state is a non-degenerate state. This is not the case in
the strict sense for isotropic systems with a magnetic low-temperature phase or for gauge
invariant systems with a superconducting low-temperature phase. These systems possess
a continuous symmetry which is not a symmetry of the ground state, but commutes with
the Hamiltonian. This effect is called spontaneous symmetry breaking.
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for t > t′ and an analogous expression for t < t′. The numerator of (15)
is written now in a very transparent form. At the right, one starts with
the (known!) ground state |0〉, which evolves in time from −∞ to t′, then
an electron in state λ is added. The resulting many-particle state evolves
in time till t, where an electron in the same state λ is removed. The new
many-particle state then evolves in time until ∞ and is eventually projected
onto the ground state |0〉. The denominator just represents a phase making
the right hand side of (15) equal to the left hand side if the c-operators on
both sides of the equation are removed.

Condensing again the notation by introducing the time-ordering operator,
we can collect the 3 S-matrices in the expression above (note that S(t, t′) is
a bosonic operator) and eventually arrive at

G(λ, t− t′) = −i〈0|T{cλ(t)c
+
λ (t′)S(∞,−∞)|0〉

〈0|S(∞,−∞)|0〉 (16)

which is the form of the Green’s function used as the starting point for the
perturbation theory. We note again that the operators in (16) are understood
to be in the interaction representation. The state |0〉 is the ground state ofH0.

In the form (16), all the nontrivialities are hidden in the S-matrix, which
can be written easily as a power series in the perturbation V as was done with
U(t) in (13). All other elements of (16), the single-particle wave functions
used in the definition of the c-operators, the ground state |0〉 of H0, and
the dynamics of the c-operators is given by the nonperturbed part H0 of the
Hamiltonian.

The only difficulty in (16) is the S-matrix in the denominator, which can
be written as a power series in the perturbation V . We will see later, that
the expectation value in the denominator of the Green’s function will cancel
some terms arising in the series expansion of the S-matrix in the numerator,
and therefore poses no problem.

5 The bare electron Green’s function

As an example for a Green’s function, we calculate the bare electron Green’s
function, which is the Green’s function for the case of a vanishing perturba-
tion V = 0. This case is particularly important, because the perturbation
theory will eventually give rise to a rule for the calculation of the Green’s func-
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tion for the nontrivial case V = 0 from the bare Green’s function G(0)(λ, t−t′)
and the perturbation V .

We use Eq. (16) as a starting point for the calculation and note that a
vanishing perturbation V implies that the S-matrix becomes the unit matrix.
The bare Green’s function, then, is given by the expression

G(λ, t− t′) = −i〈0|T{cλ(t)c+
λ (t′)}|0〉 ≡ G(0)(λ, t− t′) . (17)

We distinguish now two main cases for the ground state of the many-electron
system. The first is given by a system allowing for a varying number of
particles, or, resulting in the same bare Green’s function, one electron in
an otherwise empty band . Then the ground state is the vacuum containing
no particles at all. The other—and more frequent—case is the one of a
degenerate electron gas which is a model for a metal or a heavily doped
semiconductor.5 These systems contain a large but fixed number of electrons,
and therefore the ground state, called Fermi sea |FS〉, is the state with the
lowest energy for a fixed number of N particles and may be represented by
the Fermi surface which separates the occupied from unoccupied states in
k-space. We are talking here about the ground state |0〉 of the unperturbed
system H0. A Fermi surface, though, also exists in many systems exhibiting
particle-particle interactions. In spherical systems, the Fermi surface is a
sphere of radius kF in k-space. The Fermi sea plays the role of the vacuum
state for a degenerate electron gas.

5.1 An empty band

For the case of a system with a varying number of particles, the bare Green’s
function is particularly simple. The electron destruction operator cλ(t) ap-
plied to the ground state |0〉 (which corresponds to the particle vacuum)
always gives zero. As a consequence, the bare Green’s function (17) vanishes
identically for the case t < t′. For t > t′, the creation operator is applied to
the ground state resulting in the state c+

λ |0〉 which has an energy of ελ. The
expectation value 〈0|cλc+

λ |0〉 turns out to be one, and hence the bare Green’s
function is given by

G(0)(λ, t− t′) = −i · θ(t− t′) · e−iελ(t−t′) . (18)

5Doped in such a way that at least the dopant wave functions overlap, and therefore
create a band rather that isolated levels.
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Perturbation theory usually is formulated in k-space rather that in real space,
so we also will give the Fourier transform of the bare Green’s function defined
by

G(λ, ω) =

∫ ∞

−∞
dt eiωtG(λ, t) . (19)

This integral, however, does not converge for the bare Green’s function G(0)

defined in (18). Hence, we are forced to introduce a convergence factor
exp(−δt) with δ = 0+ to the exponential function in the integrand of (19).
Because of the fact that the bare Green’s function vanishes for negative times,
this guarantees the existence of the Fourier transform, which becomes

G(0)(λ, ω) =
1

ω − ελ + iδ

and is just a simple pole in the lower half of the complex frequency plane
at ω = ελ. The poles of the Green’s function corresponds to the excitation
energies of the system.

5.2 The degenerate electron gas

We already mentioned that the filled Fermi sea |FS〉 plays the role of the
vacuum state for a degenerate electron gas. When working with this ground
state, it is important to consider that an electron k can only be added to
the ground state, if |k | > kF . In the other case |k | < kF , an electron can
only be removed from the Fermi sea. This removal can be considered as the
creation of a hole. The removal of an electron kσ removes a momentum k
and a spin σ as well as the energy εk from the system. The creation of the
hole has to have the same effect with respect to these quantities, therefore we
conclude that the hole has a momentum, spin, and energy −k , −σ, and −ε,
respectively.

Let us focus now the evaluation of the Green’s function (17). We consider
the case t > t′, call the energy of the Fermi sea E0, and conclude from

〈0|eiH0tcke
−iH0(t−t′)c+

k e
−iH0t′ |0〉 = 〈0|eiE0tcke

−i(E0+εk)(t−t′)c+
k e
−iE0t′ |0〉

and the fact that the operator c+
k can create an electron only above the Fermi

surface, that
G(0)(k , t− t′) = −ie−iεk (t−t′)Θ(k − kF ) .
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For the case t < t′, we can carry out a similar calculation or simply infer the
Green’s function from that for t > t′ while taking into account that we have
to (1) exchange t and t′, (2) put an overall minus sign for the exchange of the
operators, (3) exchange εk by −εk , because an electron is removed now, and
(4) replace Θ(k − kF ) by Θ(kF − k), because electrons can only be removed
below the Fermi surface. Combining the result obtained in this manner with
that obtained above, the Green’s function for the degenerate electron gas
becomes

G(0)(k , t− t′) = −i[Θ(t− t′)Θ(k − kF )− Θ(t′ − t)Θ(kF − k)]e−iεk (t−t′) ,

and performing the Fourier transformation of the function in time-space
yields the expression

G(0)(k , ω) =
1

ω − εk + iδ sign(k − kF )
(20)

which has a pole in the lower frequency planes for energies above the Fermi
surface and pole in the upper half plane for energies below the Fermi surface.

It is often very practical to measure the energy of the electrons in the de-
generate electron gas with respect to the Fermi surface. We therefore try to
modify the formalism used so far in such a way that instead of the energy εk

the energy ξk = εk − µ measured with respect to the chemical potential µ
(which depends on the particle number N) appears. A simple redefinition of
the energy scale, however, is only possible if we restrict ourselves to particle-
number conserving excitations. In the more general case, we use a new
representation of many-body theory, in which not anymore the particle num-
ber N , but the chemical potential µ is given. Then, the exact ground state
is no longer determined by minimizing 〈GS|H|GS〉 while keeping 〈GS|N |GS〉
constant. Instead, the expression 〈GS|H − µN |GS〉, when minimized, gives
a µ-dependent state |µ〉 which corresponds to the exact ground state, if we
put the chemical potential µ determined by the condition 〈µ|N |µ〉 = N0.

Then, in the definition of the Green’s function G(t) the operatorH0 giving
the time-dependence of the c-operators is replaced by the combination H0−
µN . Taking into consideration that the particle number commutes with the
Hamiltonian H0, it can be seen that the Green’s function G(µ)(t) defined
for a fixed chemical potential is connected to the one defined for a fixed
number of particles by the relation G(µ)(t) = G(t) · exp iµt. In the Fourier
representation, therefore, the frequency ω in the expression for G(ω) has
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to be replaced by ω + µ in order to get G(µ)(ω). Then, using the energy
ξk = εk − µ measured relatively to the Fermi energy, the expression

G
(0)
(µ)(k , ω) =

1

ω − ξk + iδ sign ξk
(21)

results for the bare Green’s function of a degenerate electron gas for a fixed
chemical potential µ.

We see that the Green’s function in frequency-space has a particularly
simple form: for a given momentum k it consists of a simple pole (of residue 1)
at the single-particle excitation energy ξk . In order to describe electrons
(ξk > 0) and holes (ξk < 0) with one single Green’s function, the pole, if
related to an electron, is located in the lower frequency half plane. If related
to a hole, the pole is in the upper half of the complex frequency plane.

6 Perturbative evaluation of the

Green’s function

6.1 Expansion of the S-matrix

For the purpose of evaluating the Green’s function, we are going to focus on
its numerator of (16). We expand the S-matrix in a series in the perturba-
tion V using (14). Then, a typical term in the expansion looks like

(−i)n
n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn 〈0|T{cλ(t)c+

λ (t′)V (t1) · · ·V (tn)}|0〉 . (22)

The perturbation V in general will always consist of a number of electron
creation and annihilation operators, and also of operators creating and an-
nihilating other elementary excitations. We give two examples. In the first
example, the Coulomb interaction only involves electronic excitations. Two
electrons take part in the Coulomb interaction, therefore, two creation and
two annihilation operators will come into the game. In the Schrödinger rep-
resentation, the interaction is given by (8). In the interaction representation
all four operators in the Coulomb interaction are taken at the same time.

The second example is the electron-phonon interaction which is repre-
sented by the equation

V =
∑

q ,k

Mλ,n,n′

q ,k c+
n′,k+qcn,k(aqλ + a+

−qλ) (23)
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kn,

λ, q
k+qn’,

Figure 3: The electron-phonon interaction.

which describes the annihilation of a phonon of momentum q and branch
index λ (by the operator aqλ) while scattering an electron from band n and
momentum k to band n′ and momentum k + q (see Fig. 3). This electron
scattering process may also be related to the creation of a phonon with
momentum −q and branch index λ (given by the operator a+

−qλ). Both

processes have the same amplitude which is given by Mλ,n,n′

q ,k . Therefore,
the two phonons under discussion are usually considered to be one phonon
excitation by introducing the operator Aqλ = aqλ + a+

−qλ. The transition
to the interaction representation is performed again by writing the three
operators in former equation in the interaction representation individually.

From the discussion given above, we conclude that the ground state expec-
tation value in (22) can be considered for all practical purposes as consisting
of an equal number of electron creation and destruction operators, taken at
particular times, in the interaction representation and creation and destruc-
tion operators of other excitations, for instance phonon excitations. As a
matter of fact, operators to different excitation types commute. Therefore
the time-ordered product of a collection of, say, electron creation and de-
struction operators and phonon operators is equal to the time-ordered prod-
uct of the electron operators times the time-ordered product of the phonon
operators. The expectation value of this product can be separated into an
expectation value of electron operators times an expectation value of phonon
operators, respectively. Hence, we are going to discuss the ground state ex-
pectation value of the time-ordered product of a collection of m electron
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creation and m electron annihilation operators.

6.2 Time-ordering, pairing, and Wick’s theorem

The expectation values of time-ordered products of creation and destruc-
tion operators like the one in (22) with V from (23) involve considerable
complexity due to the presence of the time-ordering operator. A number
of 2m operators, taken at different times, allows for up to (2m)! different
time-orderings. Fortunately, most of these ordered products vanish, and the
time-ordering can be reformulated in a relatively simple manner. This re-
formulation is based on Wick’s theorem. Before stating the theorem, we
introduce some concepts which are important for its application.

Consider the expectation value

〈0|T{cα(tα)c+
β (tβ)cγ(tγ)c

+
δ (tδ)}|0〉 . (24)

We assume a certain relation for the time arguments, say tδ > tα > tγ > tβ,
and perform the time-ordering. This leads to

+〈0|c+
δ cαcγc

+
β |0〉

(we suppress the time arguments from now on). The term has a positive sign
because an even number of 4 transpositions is needed for the reordering of
the operators.

The concept of pairing is based on the following observation. The opera-
tor c+

β adds an electron in state β to the ground state. If this electron is not
removed later on, the expectation value above will vanish. In other words,
either α has to be equal to β, or γ has to be equal to β. For all other cases,
the expectation value vanishes. This yields

〈0|c+
γ cαcγc

+
α |0〉δαβδγδ + 〈0|c+

α cαcβc
+
β |0〉δαδδβγ , (25)

and the number of two terms in this expression reflects the fact that there
are two possibilities to pair two creation operators with two destruction op-
erators. A product of m creation and m annihilation operators allows for m!
different pairings.

The operators in expression (25) may be regrouped. This regrouping is
done in such a way that the ordering of operators to the same states is not
altered because this would produce an extra term according to {c, c+} = 1.
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Again we take into account that an odd number of transpositions of the
operators yields a minus sign, and arrive at the expression

−〈0|c+
γ cγcαc

+
α |0〉δαβδγδ + 〈0|c+

α cαcβc
+
β |0〉δαδδβγ .

Note that in the first term of this expression, first an electron in state α is
created, and subsequently removed. After the removal of this electron, we are
back in the ground state, because the creation and destruction operators are
creating and annihilating electrons in the eigenstates of H0, and the ground
state is meant to be the ground state of H0. The dynamics added when
introducing the interaction representation is the dynamics which is caused
by the Hamiltonian H0 also. Therefore, the electron created in state α will
stay in this state. Hence, the expectation values in the equation above can be
split into expectation values of products of one creation and one destruction
operator,

〈0|c+
γ cγ |0〉〈0|cαc+

α |0〉δαβδγδ − 〈0|c+
α cα|0〉〈0|cβc+

β |0〉δαδδβγ .

This is equivalent to (24) for the given time relation. The ground state
expectation values only contain products of a creation and a destruction
operator and, therefore, are very similar to the known bare Green’s function.
Wick’s theorem expresses expectation values of the form (24) as sums of
products of bare Green’s functions.

Wick’s theorem can be stated in the form of a handy rule:

• To calculate an expectation value of a time-ordered product of m cre-
ation and m annihilation operators, add all possible different pairings
of creation and annihilation operators which amount to m!.

• To pair a creation and a annihilation operators means to bring them
together (the annihilation operator to the left of the creation operator)
by repeated transpositions while taking care of the sign. Then replace
the pair by the time-ordered ground state expectation value of the pair.

For a proof of Wick’s theorem, refer to [3], Sect. 8.2.
After having applied Wick’s theorem, the expectation value under con-

sideration is expressed as a sum of products made up of the factors

〈0|T{cλ(t)c+
λ′(t
′)}|0〉 =

= δλλ′ ×
{
iG(0)(λ, t− t′) for t 6= t′

−〈0|c+
λ (t)cλ(t)|0〉 = −θ(ξλ − ξF ) for t = t′ .

(26)
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Sometimes, the Fermi function nF (ξλ) = nF (ελ − µ) is used instead of the
factor θ(−ξλ). For T = 0 formalism, this is exactly the same.

6.3 Feynman diagrams

As an example we calculate the numerator of the Green’s function for the
system H = H0 + V where H0 is the Hamiltonian of the free Fermi gas (7),
and V is the electron-phonon coupling mentioned above. We shall consider
only one phonon branch, one electronic band, and a electron-phonon matrix
element independent of the electron momentum k , that is

V =
∑

q

Mqc
+
k+qckAq (27)

with Aq = aq + a+
−q . The contribution of nth order in the perturbation V

to the numerator of the Green’s function is given by (22). It is obvious that
the contribution of zeroth order in V leads to the bare Green’s function G(0).
Furthermore, the contribution to the Green’s function of first order in the
perturbation V vanishes, because the expectation values of one phonon op-
erator 〈0|Aqλ|0〉 are equal to zero. Hence we focus on the contribution of
second order in V . Taking care on the prefactor, this reads

(−i) · (−i)2

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 〈0|T{ck(t)V (t1)V (t2)c+

k (t′)}|0〉 . (28)

By replacing the perturbation V in the interaction representation into (28),
and separating phonon operators from electron operators we find

(−i)3

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∑

q1,q2

Mq1Mq2〈0|T{Aq1(t1)Aq2(t2)}|0〉×

×
∑

k1,k2

〈0|T{ck(t)c+
k1+q1

(t1)ck1(t1)c+
k2+q2

(t2)ck2(t2)c+
k (t′)}|0〉 .

(29)

The first expectation value in this expression can be written in terms of the
(bare) phonon Green’s function D(0)(q , t1 − t2)

iδq1+q2,0D
(0)(q1, t1 − t2) ,

where D(0)(q , t1 − t2) is defined as

D(0)(q , t1 − t2) = −i〈0|T{Aq(t1)A−q(t2)}|0〉 . (30)
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The phonon Green’s function will be discussed later in this appendix. The
second expectation value has to be decomposed into combinations of the
bare electron Green’s function by making use of Wick’s theorem. We find
the 3! = 6 different pairings6

〈T{ck(t)c+
k1+q1

(t1)ck1(t1)c+
k2+q2

(t2)ck2(t2)c+
k (t′)}〉

= 〈T{ck(t)c+
k1+q1

(t1)}〉 · 〈T{ck1(t1)c+
k2+q2

(t2)}〉 · 〈T{ck2(t2)c+
k (t′)}〉

+ 〈T{ck(t)c+
k2+q2

(t2)}〉 · 〈T{ck2(t2)c+
k1+q1

(t1)}〉 · 〈T{ck1(t1)c+
k (t′)}〉

− 〈T{ck(t)c+
k1+q1

(t1)}〉 · 〈T{ck1(t1)c+
k (t′)}〉 · 〈T{ck2(t2)c+

k2+q2
(t2)}〉

+ 〈T{ck(t)c+
k (t′)}〉 · 〈T{ck1(t1)c+

k1+q1
(t1)}〉 · 〈T{ck2(t2)c+

k2+q2
(t2)}〉

+ 〈T{ck(t)c+
k2+q2

(t2)}〉 · 〈T{ck1(t1)c+
k1+q1

(t1)}〉 · 〈T{ck2(t2)c+
k (t′)}〉

− 〈T{ck(t)c+
k (t′)}〉 · 〈T{ck1(t1)c+

k2+q2
(t2)}〉 · 〈T{ck2(t2)c+

k1+q1
(t1)}〉 .

(31)

Note again that expectation values have been ordered such that the creation
operator is placed to the right of the destruction operator, and in addition, a
time ordering operator has been added. The expectation values in (31) can
be expressed as bare Green’s functions or as a Fermi function nF according
to (26). Performing this step and noting that the factor δq1+q2,0 = 0 is already
present in (29), we obtain

(a) = i3δk ,k1+q1δkk2G
(0)(k , t− t1)G(0)(k − q1, t1 − t2)G(0)(k , t2 − t′)

(b) = i3δkk1δk ,k2−q1G
(0)(k , t− t2)G(0)(k + q1, t2 − t1)G(0)(k , t1 − t′)

(c) = i2δkk1δq1,0nF (ξk2)G(0)(k , t− t1)G(0)(k , t1 − t′)
(d) = iδq1,0nF (ξk1)nF (ξk2)G

(0)(k , t− t′)
(e) = i2δq1,0δkk2nF (ξk1)G(0)(k , t− t2)G(0)(k , t2 − t′)
(f) = −i3δk1,k2−q1G

(0)(k , t− t′)G(0)(k1, t1 − t2)G(0)(k1 + q1, t2 − t1)

(32)

The terms have been written in the same order as in the equation above.
Some of the Kronecker δ-functions in (32) drop out, because they identically
vanish.

This expression is still rather cumbersome but fortunately it can be ex-
pressed by physically very intuitive diagrams, the Feynman diagrams. In
the time domain the rules for associating a Feynman diagram to an expres-
sion like one of the six above are as follows. Each bare Green’s function

6we have shortened a bit the notation writing 〈· · ·〉 as an abbreviation for 〈0| · · · |0〉.
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Figure 4: Feynman diagrams for the renormalization of the electron Green’s
function by phonons to second order in the electron-phonon coupling matrix
element.
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G(0)(k , t− t′) is represented by a small straight line carrying a quasimomen-
tum k and reaching from the time t′ to t. The line also includes an arrow
denoting a direction. The meaning of this arrow will be explained later. It
does not imply that t′ < t. Nor does it imply that the line represents an elec-
tron if the arrow points from left to right and a hole, if it points from right
to left. A Green’s function with t = t′, that is, a factor nF , is represented by
a small circle. The direction of the line forming the circle is arbitrary and
has no consequences.

A phonon is represented by a wavy line. It does not carry an arrow
because the phonon Green’s function is even in the time argument. The
representations of the Coulomb interaction and also of photons will be given
later. We can already surmise that the representation of photons (also other
bosons) will be isomorphic to that of phonons.

We discuss now the 6 diagrams of Fig. 4), starting with the one denoted
by (a) and construct its associated Feynman diagram. The third Green’s
function from the left in expression (a) of (32) represents an electron propa-
gating from t′ to t2 and having a quasimomentum of k . We denote it by a
line from t′ to t2 with a label k . At the time T2 two things happen. First, the
electrons continues propagating, from t2 to t1, with a momentum of k − q1.
Second, a phonon carrying the missing q1 is created. We draw an electron line
to t1 and start a new wavy phonon line at t2. At t1, the phonon is destroyed,
and the electron continues to propagate with its initial momentum k to t.
The contribution of this diagram to the numerator of the Green’s function
(the term (29)) is given by the term

i

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∑

q

|Mq |2D(0)(q , t1 − t2)×

×G(0)(k , t− t1)G(0)(k − q , t1 − t2)G(0)(k , t2 − t′) ,
(33)

it has to be taken into account that M−q = M∗
q . The nodes at t1 and t2 in the

diagram in Fig. 4(a) are called vertices and are related to the electron-phonon
matrix element Mq . One of the vertices represents the creation of a phonon,
the other the destruction of a phonon. Therefore, the matrix element Mq

appears as a complex conjugated pair: the matrix element for a time reversed
process is the complex conjugate of that for the direct process.

In the diagram, the quasimomentum q is summed over. In this way all
possible phonons are included. The time integrations show that the way a
diagram is drawn or the arrows are put on the electron lines does not imply
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any time ordering. The arrows denote particle number conservation at the
vertices.

The diagram in Fig. 4(b) is very similar to that in Fig. 4(a). The only
difference is the labeling of some of the variables. It can be shown that there
are always n! diagrams in the nth order perturbation contribution which are
equal in the sense that their contribution to the Green’s function is the same.
The related diagrams then are called topologically equal , which means that
by relabeling internal variables, the diagrams become identical. When using
perturbation theory one only draws one representative of these n! topolog-
ically identical diagrams, and removes the factor 1/n! in the corresponding
perturbation term.

Let us proceed with the diagram Fig. 4(c). This time we have an electron
propagating from t′ to t1, and then from t1 to t. In both cases it carries
a quasimomentum k . At the time t1, a phonon is created. Because of the
factor δq1 ,0 in the expression for the diagram (c), this must be a Γ-point
phonon. At t2 this phonon is destroyed. Correspondingly, the factor nF (ξk2)
appears. We recall the fact that this is a Green’s function with the time
argument t1 − t1. Therefore we draw this factor as a loop formed by an
electron line. The loop is attached to the time t1 (and similarly to t2).

The diagrams (d) and (e) are constructed in a similar manner, and also
contain a Γ-point phonon. This phonon has no dynamics,7 it corresponds
to static strain which is meant to be not included in the Hamiltonian H.
Therefore, they vanish.

The last expression is represented by diagram (f). We start with its first
Green’s function which denotes an electron traveling from t′ to t. At t1,
an electron with momentum k1 and a phonon with quasimomentum q1 are
created. Furthermore, an electron with quasimomentum k1 +q1 is destroyed.
This is necessary to conserve particle number and the quasimomentum. At
time t2 a similar annihilation happens.

Note that the diagrams (d) and (f) have a very particular property: they
decay into separable, independent parts. Diagram (f), for instance, is just
given by a bare Green’s function G(0)(k , t− t′) times some factor. It can
be shown that the contributions arising from these separable parts, whose
related diagrams are called disconnected diagrams, exactly cancel the factor
〈0|S(∞,−∞)|0〉 in the denominator of the Green’s function.

7This is only true for acoustic phonons, but not for optical phonons.
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6.4 Reformulation in the frequency-domain

Before concluding this section and stating the Feynman rules, which tell
how to determine the contributions of nth order perturbation theory to the
Green’s function, we write the diagrams and their corresponding mathemati-
cal expressions in the frequency domain by performing a Fourier transforma-
tion of the Green’s function. It will turn out that this introduces a further
simplification in the perturbation series for the Green’s function. We have
seen in the paragraphs above (refer, e.g., to (33)) that the time integrals over
the products of Green’s function have the form of a convolution; the individ-
ual Green’s functions in the integrand depend on time via differences ti−ti+1.
By expressing the calculations in the frequency domain, these convolutions
become simply products.

How this Fourier transformation is performed, and what implications
it has, will be explained using as an example the contribution shown in
Fig. 4(a) to the Green’s function, or, respectively, Eq. (33). In this expression,
we replace the Green’s functions by the corresponding frequency-dependent
Green’s functions

G(k , t− t′) =

∫
dω

2π
e−iω(t−t′)G(k , ω) ,

and similarly for the phonon Green’s function. This introduces the four fac-
tors exp−iν(t1− t2), exp−iω(t− t1), exp−iω′(t1− t2), and exp−iω′′(t2− t′)
for the bare phonon and the first, second, and third bare electron, respec-
tively. Collecting all these terms together, the time dependent part of (33)
becomes ∫

dt1

∫
dt2 e

−iωte−i(ω
′+ν−ω)t1e−i(ω

′′−ν−ω′)t2eiω
′′t′

which, when integrated, gives rise to the two δ-functions 2πδ(ω ′ + ν − ω)
and 2πδ(ω′′ − ν − ω′) which guarantee the conservation of energy at the
vertices (the vertices correspond to the nodes in the Feynman diagram, places
where 2 or more lines are joined) and remove the integrals over the internal
frequencies ω′ and ω′′ introduced by the Fourier transformation. Then, only
the factor exp(−iω(t − t′)) is left which resembles the one in the Fourier
transformation of the whole expression (33). The diagram given in Fig. 4(a)
corresponds consequently to the diagram in Fig. 5 when working in frequency
space, whereas the corresponding contribution to the frequency-dependent
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Green’s function becomes

i

2!

∑

q

|Mq |2G(0)(k , ω)

[∫
dω

2π
D(0)(q , ν)G(0)(k − q , ω − ν)

]
G(0)(k , ω) .

(34)
Comparing this expression to the diagram in Fig. 5, we notice some impor-
tant points related to Feynman diagrams. (i) the incoming and the outgoing
bare Green’s functions which carry the same indices as the Green’s func-
tion G(k , ω) to which they contribute. This is clearly related to (ii), the
conservation of quasimomentum and energy (i.e. frequency) at each of the
vertices of the diagram. For the case of the two quasimomenta, this conserva-
tion was already introduced when building pairs according Wick’s theorem,
and ultimatively are a consequence of the translational invariance of the sys-
tem under consideration (here it does not matter whether there is a “full”
continuous translation like the translation group of space, or “only” discrete
translations like those imposed by a Bravais lattice). The conservation of
energy was introduced when performing the Fourier transformation, and re-
lates to the fact that the Green’s function is a function of time differences
only.

(iii) All internal lines (i.e. all lines but the incoming and outgoing ones)
are given internal quantum numbers (i.e. q), which only have to satisfy the
momentum and frequency conservation at each vertex. If many possibilities
are compatible with this constraint, they are summed over as in the case
of (34) for the variables q and ω.

k,ω
ω’ =ω−ν

=ν+ω’=ω’’,ωk

q

k−q

,ν

Figure 5: A Feynman diagram in frequency space.
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6.5 A conclusion: the Feynman rules

In addition to introducing the Feynman diagrams, the example above has
demonstrated some basic principles. The first is the cancellation of the
ground state expectation value of the S-matrix. Those terms in the numera-
tor of the Green’s function (16) which correspond to nonconnected diagrams
exactly cancel the denominator in (16). The second one deals with the topo-
logically equivalent Feynman diagrams. The nth order (in V ) term in the
numerator of the Green’s function yields n! Feynman diagrams which are
topologically equivalent, that is just differ by a different labeling of integra-
tion (or sum) variables.

Taking these principles into account, we can state that the Green’s func-
tion is given by a formula much simpler than that in (16):

G(k , t− t′) = −i〈0|T{ck (t)c+
k (t′)S(∞,−∞)}|0〉diff, con

where the index “diff, con” indicates that only topologically different and
connected (i.e. not disconnected) contributions are considered.

Reformulating this statement, and including the rules for drawing dia-
grams, we arrive at Feynman’s rules for the calculation of the contribution
to the Green’s function arising as an nth order perturbation in V .

Feynman rules: When intending to calculate the contribution to the elec-
tron Green’s function8 iG(k , ω) arising in nth order perturbation theory from
electron-phonon coupling (here, n = 2m, all other contributions vanish), we

• draw all topologically different, connected diagrams which consist of
an incoming and an outgoing bare Green’s function, and contain n/2
internal phonon lines and n − 1 electron lines. To the electron lines,
arrows are added which represent particle conservation at the vertices
of the diagram. Then,

• the incoming and outgoing electron Green’s functions are labeled with
momentum k and frequency ω, and the internal lines are all also labeled
with internal momentum and frequency variables taking into consider-
ation the conservation of momentum and frequency at each of the ver-
tices (This depends on the direction of the arrow in the case of electron
lines).

8Note the factor i in front of the Green’s function. The rules presented here are valid
for the calculation of iG, not for G.
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• When translating the Feynman diagram to an analytic expression, we
write G(0)(k , ω) for each of the electron lines carrying labels k , ω. The
direction in which the arrow on the electron line points does not matter.
We write D(0)(q , ν) for a phonon line with labels q , ν.

• Then each pair of vertices terminating phonon lines is represented by
the squared electron-phonon matrix element |Mq |2/Ω (Ω is the integra-
tion volume).

• As a next step, all the internal quasimomenta are summed over and all
the internal frequencies are integrated over by inserting the appropriate
sums and integrals

∑
q and

∫
dω/(2π).

• Finally, we put a factor in(−1)F (2S + 1)F where F is the number of
closed fermion loops, and S denotes the spin quantum number of the
electrons.

The last rule comes from the fact that the Green’s functions actually cor-
respond to second rank tensors in spin space and, in the simplest case
of no external magnetic field and no spin-spin interactions, have the form
Gαβ(k , ω) = δαβG(k , ω). When evaluating the diagram obviously a sum over
the spin indices has to be carried out. And in Fermion loops, combinations
like δααG or δβγGδγβG yield a factor of 2S+1 when the spin sum is performed.

6.6 The bare phonon Green’s function

We close this section by calculating explicitly the bare phonon Green’s func-
tion defined in (30). The phonon operators Aq are given by Aq = aq +
a+
−q (when suppressing the branch index λ). When evaluating the prod-

uct Aq(t1)A−q(t2) we first restrict to the case t1 > t2 to circumvent the
difficulty presented by the time-ordering operator. The other case works
similarly and has to be taken into account when formulating the result of
the calculation given here. The evaluation of the product above consisting
of two A-operators, yields four combinations of two a-operators each. The
expectation value of the combinations consisting of creation or destruction
operators only vanishes, and the terms left contain the combinations a+

−qa−q

and aqa
+
q . The state |0〉 here corresponds to the vacuum state of the phonon

field, and therefore contains no phonon at all. Hence, the expectation value
of a+

−qa−q also vanishes. The time dependence of the remaining term is given
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by aq(t1)a+
q (t2) = exp−iωq (t1− t2)×aqa

+
q and recalling the quantum theory

of the harmonic oscillator then leaves us with the result

D(0)(q , t1 − t2) = −i〈0|T{Aq(t1)A−q(t2)}|0〉

= −i×
{
e−iωq (t1−t2) for t1 > t2
eiωq (t1−t2) for t1 < t2

(35)

where the case t1 < t2 was taken into account already. The Fourier transfor-
mation of the bare phonon Green’s function gives

D(0)(q , ω) =
1

ω − ωq + iδ
− 1

ω + ωq − iδ
=

2ωq

ω2 − ω2
q + iδ

(36)

which has two poles, one at the frequency ω = ωq , slightly shifted to the
lower frequency plane, and the second at ω = −ωq , slightly shifted to the
upper frequency plane.

7 Self-energy contributions and the

Dyson equation

In the last section, we have come to the conclusion that the contribution to
the Green’s function in nth order of the perturbation V in (27) is given by
all topologically different and connected Feynman diagrams containing n/2
phonon lines. For most of the applications of Green’s function theory it is
still not sufficient to approximate the Green’s function by its bare counterpart
plus the terms given by perturbation theory up to, say, order N . Instead,
important contributions to the Green’s function have to be included to all
orders.

It is important to stress that only the certain terms have to be included to
infinite order. Taking all diagrams to all orders would be an insurmountable
task. But the inclusion of certain important contributions9 to all orders is
relatively easy to manage by applying the Dyson equation.

Let us look at a simple example. The diagrams contributing to the elec-
tronic Green’s function in 4th order of the electron-phonon matrix element
are show in Fig. 6.

9Which contributions are important is shown by “experience.”
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(a)

(b)

(c)

(d)

Figure 6: Feynman diagrams for the renormalization of the electron Green’s
function by phonons in fourth order of the electron-phonon coupling matrix
element.
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We focus on the diagram of Fig. 6(a). It is simply twice the diagram in
Fig. 5. In sixth order perturbation theory it will occur again, then being
three times the diagram in Fig. 5. Considering this class of diagrams up
to infinite order is equivalent to summing a geometrical series and can be
performed easily, provided it converges.

The diagram in Fig. 5 translates according to the Feynman rules into the
expression

iG(0)(k , ω)Σ1(k , ω)G(0)(k , ω)

with Σ1(k , ω) = −
∑

q

|Mq |2
∫

dω

2π
D(0)(q , ν)G(0)(k − q , ω − ν) .

It is clear that the diagram in Fig. 6(a) then is represented by the expression

iG(0)(k , ω)
[
Σ1(k , ω)G(0)(k , ω)

]m

for m = 2. For m = 2n > 2 it corresponds to an m-fold repetition of Fig. 5.
Summing up the contributions for all m = 2n (n = 0 . . .∞) yields

G1(k , ω) = G(0)(k , ω) +
∑

m

G(0)(k , ω)
[
Σ1(k , ω)G(0)(k , ω)

]m

= G(0)(k , ω) +G(0)(k , ω)Σ1(k , ω)G1(k , ω) .

(37)

We have denoted by G1(k , ω) the Green’s function that results from summing
all the diagrams consisting of a sequence of that in Fig. 5. A graphical
representation of (37) is shown in Fig. 7.

Clearly, the Green’s function G1 defined in the last paragraph is only an
approximation to the exact Green’s function G. But the method above can
be extended to give the exact Green’s function as well (at least in principle).
This extension is based upon the observation that the function Σ1(k , ω) can
be replaced by a function Σ(k , ω), such that the function G1 becomes the
exact Green’s function. The resulting Dyson equation is

G(k , ω) = G(0)(k , ω) +G(0)(k , ω)Σ(k , ω)G(k , ω) , (38)

where the self energy Σ(k , ω) is the sum of all irreducible self-energy parts
Σi(k , ω). As irreducible self-energy parts we designate diagrams which can
be put between two electron lines and cannot be separated into two noncon-
nected parts by just cutting one electron line. Equation (38) generates the
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whole series of diagrams contributing to the Green’s function by iteration
and in this manner generates all different sequences of self-energy parts Σi to
form diagrams of higher order in the perturbation. The diagram in Fig. 6(a)
is generated in the second iteration of the Dyson equation as

G(0)(k , ω)Σ1(k , ω)G(0)(k , ω)Σ1(k , ω)G(0)(k , ω)

and if the diagram related to the expression Σ1(k , ω)G(0)(k , ω)Σ1(k , ω) would
be included as a self-energy part Σ2 in the self energy, the diagram in
Fig. 6(a) also would be generated in the first iteration of the Dyson equation
as G(0)(k , ω)Σ2(k , ω)G(0)(k , ω) and would be incorrectly counted twice.

Σ

= +

+
+ ...

= +

=

Figure 7: Self energy and Dyson equation.

The recipe usually employed to calculate the Green function is to calcu-
late the self energy first, and then replace it into Dyson’s equation. It is clear,
however, that the self energy cannot be calculated exactly, because it consists
of an infinite number of very different diagrams. But at this point, a rather
systematic way of approximating the Green’s function can be given: the one
to approximate the self energy. This procedure is illustrated in Fig. 7: the
self energy is approximated by one self-energy part, which for some reason
is considered to be the most important one, and is being used in conjunc-
tion with the Dyson equation the calculate an approximation of the Green’s
function.
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Let us look again at the bare Green’s function

G(0)(k , ω) =
1

ω − ξk + iδk

which is closely related to the excitation spectrum of the noninteracting sys-
tem because it has poles at the unperturbed excitation energies. This prop-
erty is shared by the full Green’s function with respect to the interacting
system:

G(k , ω) =
1

ω − ξk − Σ(k , ω) + iδk
. (39)

The excitation energies of the perturbed system as obtained from (39) are

ω − ξk − Σ(k , ω) = 0

or ω = ξk + Re Σ(k , ω) + i Im Σ(k , ω) .
(40)

Note that due to the dependence of the self energy on the frequency, (40) is
in general non-linear.

7.1 The self-energy of a phonon

The formalism presented so far is also applicable to calculating the phonon
Green’s function D(q , ν) in a perturbational approach from the bare phonon
Green’s function D(0)(q , ν). The following Dyson equation defines the phonon
self-energy Π(q , ν):

D(q , ν) = D(0)(q , ν) +D(0)(q , ν)Π(q , ν)D(q , ν) . (41)

As in the case of the electron self-energy, the phonon self-energy is given
by all diagrams, which can be inserted between two phonon lines represent-
ing D(0)(q , ν), but cannot be separated into independent parts by just cutting
one phonon line.

An important contribution to the phonon self-energy is the decay of the
phonon into an electron-hole pair with a subsequent recombination of the
electron-hole pair and creation of a phonon. This process is depicted in
Fig. 8, and, using the Feynman rules, can be translated into the expression

Π(q , ν) = −2i|Mq |2
∫

d3k dω

(2π)4
G(0)(k + q , ν + ω)G(0)(k , ω) .



c© 1999, Thomas Strohm, www.thomas-strohm.de 37

k,ω

k+q, ω+ν

q,ν

Figure 8: A irreducible contribution to the phonon self-energy.

As we will see later, this expression is very similar to the one for the longi-
tudinal dielectric function.

We now evaluate the frequency integral in the expression above for a
degenerate electron gas

∫
dω

2π
G(0)(k + q , ν + ω)G(0)(k , ω)

=

∫
dω

2π

1

ω + ν − ξk+q + iδk+q

1

ω + ν − ξk + iδk
.

We encounter four cases. The first is the case with ξk+q above the Fermi
surface and ξk below the Fermi surface, that is, the former corresponds to
an electron and the latter to a hole. We close the integration contour in the
upper frequency half plane and take the residue of the pole at ω = ξk + iδ.
The integral

∫
dω equals to 2πi times the sum over all residues,

∫
dω

2π

1

ω + ν − ξk+q + iδk+q

1

ω + ν − ξk + iδk
=

i

ν − (ξk+q − ξk ) + iδ
.

The second case deals with ξk+q below the Fermi surface and ξk above the
Fermi surface and results in the complex conjugate of the expression above.
In the last two cases, either both poles are in the upper half plane or both
are in the lower half plane. The contour can be closed in the half plane which
does not contain a pole and the integral vanishes. Therefore, there are only
contributions to the phonon self-energy from an electron and a hole, not from
two electrons or two holes.

Adding all the contributions, from the different cases above, the resulting
phonon self-energy becomes

Π(q , ν) = 2|Mq |2
∫

d3k

(2π)3

[
1

ν − (ξk+q − ξk) + iδ
+ c.c.

]
.
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This expression has poles at the energies ξk+q − ξk which are the excitation
energies for pair excitations in which an electron from the state k is excited
to the state k + q . Another very important property of the equation above
is that its real part is even in frequency ν and its imaginary part is odd
in frequency. This is a general rule for Green’s functions and self-energies
describing bosonic excitations. The excitation of fermion-pairs shares these
properties.

8 Analytic properties of Green’s function

In this section, we will take a closer look to the analytic properties of Green’s
functions and define retarded Green’s functions.

The analytic properties of the Green’s function are of central importance
for the interpretation of many-particle effects. We will investigate these
properties for the Green’s function G(k , ω) in frequency space. We recall
that G(k , t) is defined only for real times although the Fourier transform
defines G(k , ω) in the whole complex frequency plane.

8.1 The spectral functions

The analytic properties of G(k , ω) are brought clearly to light by introducing
the Lehmann representation. We start with the definition of the Green’s
function (9) (the state |GS〉 is the exact ground state of the system an we
denote by N its particle number) and treat the case t > t′. By inserting the
complete sum

∑
n |n〉〈n| = 1 of eigenstates of H between the c-operators and

using E0 and En to denote the eigenenergies of the exact ground state |GS〉
and the states |n〉, respectively, the expression

G(k , t− t′) = −i
∑

n

∣∣〈n|c+
k |GS〉

∣∣2e−i(En−E0)(t−t′)

can be derived. The states 〈n| must contain N + 1 particles. Therefore,
the energy En is the energy of an eigenstate of the (N + 1)-particle system.
If we denote by ωn the energy difference between En and the ground state
energy E0 of the (N + 1)-particle system, and take into consideration that
the difference of the ground state energies for the (N + 1)-particle and the
N -particle systems, respectively, equals the chemical potential µ, the rela-
tion En − E0 = ωn + µ holds. We consider the case for t < t′ and obtain
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an expression similar to the one above. Performing a Fourier transformation
then yields the expression

G(k , ω) = − i
∑

n

∣∣〈n|c+
k |GS〉

∣∣2 i

ω − ωn − µ+ iδ

+ i
∑

n

∣∣〈GS|c+
k |n〉

∣∣2 −i
ω + ωn − µ− iδ

.

We further simplify this expression by introducing the spectral functions

A(k , ω′) =
∑

n

∣∣〈n|c+
k |GS〉

∣∣2δ(ω′ − ωn)

B(k , ω′) =
∑

n

∣∣〈GS|c+
k |n〉

∣∣2δ(ω′ − ωn)

which vanish for negative frequencies ω′, because ωn is non-negative. These
functions have a useful physical interpretation. The expression A(k , ω) dω ′

[B(k , ω) dω′] gives the probability that an electron [hole] with momentum k
has an energy (measured from the Fermi energy) in the interval from ω ′

to ω′ + dω′. Consequently, the sum rule

∫ ∞

0

A(k , ω′) dω′ = 1− nk

[∫ ∞

0

B(k , ω′) dω′ = nk

]

expresses the fact that the electron [hole] with quasimomentum k has a
positive energy (we use nk = Θ(|k | − kF )). Note also the sum rule

∫
(A +

B) dω′ = 1.
Using the spectral functions, the Green’s function can be written in the

form

G(k , ω) =

∫ ∞

0

dω′
[

A(k , ω′)

ω − ω′ − µ+ iδ
+

B(k , ω′)

ω + ω′ − µ− iδ

]

called the Lehmann representation. Taking the real and imaginary part,
respectively, of this equation, it is easy to prove the relations

ImG(k , ω) =

{
−πA(k , ω − µ) for ω > µ
πB(k , µ− ω) for ω < µ

ReG(k , ω) =
1

π

∫ ∞

−∞

ImG(k , ω′) sign(ω′ − µ)

ω′ − ω dω′
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connecting the imaginary part of the Green’s function G(k , ω) to the spectral
functions A(k , ω) and B(k , ω), and relating the imaginary part of the Green’s
function to its real part by an equation similar to a Kramers-Kronig relation.

For a degenerate (noninteracting) electron gas, the spectral functions be-
come δ-functions, that is

A(k , ω) = (1− nk )δ(ω − εk ) A(k , ω) = nkδ(ω − εk ) .

Putting this into the Lehmann representation of the Green’s function, Eq. (20)
is easily recovered.

8.2 The retarded Green’s functions

When calculating measurable quantities, as for instance the density of states,
or the conductivity, or lifetime broadenings, it is convenient to utilize the re-
tarded Green’s functions. On the other hand, the retarded Green’s function
cannot be calculated directly, there is no diagrammatic expansion for re-
tarded Green’s functions. But the retarded Green’s function is related in a
simple way to the time-ordered Green’s function used so far. Hence, the usual
approach in calculating measurable quantities is to first determine the time-
ordered Green’s function by diagram techniques. Then the relation given
below is used to find the retarded Green’s function. The retarded Green’s
function GR(k , t− t′) is defined in the Heisenberg representation by

GR(k , t− t′) = −iΘ(t− t′)〈GS|[cH,k (t), c+
H,k(t′)]|GS〉 (42)

with the commutator [A,B]. Because of the theta function Θ(t− t′) the ω-t
Fouriertransform of (42) only has poles in the lower half frequency plane.
It is now easy to see that the relation between the time-ordered and the
retarded Green’s function is

ImGR(k , ω) = ImG(k , ω) · sign(ω − µ)

ReGR(k , ω) = ReG(k , ω)

Due to the fact that the retarded Green’s function is analytical in the upper
frequency half plane, the following Kramers-Kronig relations hold:

ReGR(k , ω) =
1

π

∫ ∞

−∞

ImGR(k , ω′)

ω′ − ω

ImGR(k , ω) = − 1

π

∫ ∞

−∞

ReGR(k , ω′)

ω′ − ω .

(43)
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